Это совокупность пищевых цепей сообщества, взаимосвязанных между собой общими пищевыми звеньями.

капуста ^ гусеница ^ синица ^ ястреб ^ человек

Например: морковь ^ заяц ^ волк
Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях. Только продуценты всегда занимают первый трофический уровень. Используя солнечную энергию и биогены, они образуют органическое вещество, которое содержит энергию в виде энер-гии химических связей. Это органическое вещество, или биомасса продуцентов, потребляется организмами второго трофического уровня. Однако не вся биомасса предыдущего уровня съедается организмами последующего уровня, потому
что исчезли бы ресурсы для развития экосистемы. При переходе от одного трофического уровня к другому происходит трансформация вещества и энергии. На каждом трофическом уровне пастбищной пищевой цепи не вся съеденная биомасса идет на образование биомассы организмов данного уровня. Значительная часть ее затрачивается на обеспечение жизнедеятельности организмов: дыхание, движение, размножение, поддержание температуры тела и т.д. Кроме того, не вся съеденная биомасса усваивается. Непереваренная часть ее в виде экскрементов попадает в окружающую среду. Процент усвояемости зависит от состава пищи и биологических особенностей организмов, он составляет от 12 до 75%. Основная часть ассимилированной биомассы расходуется на поддержание жизнедеятельности организмов и только сравнительно небольшая ее часть идет на построение тела и рост. Другими словами, большая часть вещества и энергии при переходе от одного трофического уровня к другому теряется, потому что к последующему потребителю попадает только та их часть, которая включилась в биомассу предыдущего трофического уровня. По подсчетам установлено, что теряется в среднем около 90%, и только 10% вещества и энергии переходит на каждом этапе пищевой цепи. Например:
Продуценты ^ консументы I ^ консументы II ^ кон- сументы III
1000 кДж ^ 100 кДж ^ 10 кДж ^ 1 кДж Эта закономерность была сформулирована как «закон 10%». Он гласит, что при переходе от одного звена к другому в пастбищной пищевой цепи передается лишь 10% вещества и энергии, а остальная часть расходуется предыдущим трофическим уровнем на поддержание жизнедеятельности. Если количество вещества или энергии на каждом трофическом уровне изобразить в виде диаграммы и расположить их друг над другом, то получится экологическая пирамида биомассы или энергии (рис. 13). Такая закономерность получила название «правило экологической пирамиды». Этому правилу подчиняется и численность организмов на трофических уровнях, поэтому можно построить экологическую пирамиду чисел (рис. 13).
Мальчик 1 Телята 4.5 Люцерна 2107



Пирамида энергии

Таким образом, запас вещества и энергии, накопленный растениями в пастбищных пищевых цепях, быстро расходуется (выедается), поэтому пищевые цепи не могут быть длинными. Обычно они включают 4-5 звеньев, но не более 10-ти. На каждом трофическом уровне пастбищной пищевой цепи образуется отмершее органическое вещество и экскременты - детрит, от которого начинаются детритные цепи, или цепи разложения. В наземных экосистемах процесс разложения детрита включает три этапа:
Этап механического разрушения и частичного превращения в сахариды. Он очень короткий - 3-4 года. Его осуществляют редуценты I порядка - макробиота (черви, личинки насекомых, землероющие млекопитающие и др.). На этом этапе потерь энергии практически не происходит.
Этап разрушения детрита до гуминовых кислот. Он продолжается 10-15 лет и пока слабо изучен. Его осуществляют редуценты II порядка - мезобиота (грибы, простейшие, микро-
организмы крупнее 0,1 мм). Гуминовые кислоты - это перегной, полуразрушенное органическое вещество, поэтому при их образовании происходит разрыв части химических связей и выделяется тепловая энергия, которая рассеивается в космическом пространстве.
3. Этап разрушения гуминовых кислот до неорганического вещества - биогенов. Он протекает очень медленно, особенно в нашей умеренной зоне (сотни и тысячи лет) и еще практически не изучен. Его осуществляют редуценты III порядка - микробиота (микроорганизмы меньше 0,1 мм). При разрушении гуминовых кислот происходит разрыв всех химических связей и выделяется большое количество тепловой энергии, которая теряется в космическом пространстве. Образующиеся в результате этого процесса биогены энергии не содержат, в дальнейшем они поглощаются продуцентами и опять вовлекаются в круговорот вещества.
Как видно из вышесказанного, на уровне редуцентов наблюдается задержка жизни, но так быть не должно. В почве есть запас гуминовых кислот, которые образовались очень давно, поэтому задержки жизни не происходит. В разных экосистемах скорость разрушения гуминовых кислот разная. Если она меньше, чем скорость их образования, то плодородие по-чвы повышается, если же наоборот, то оно снижается. Вот почему в умеренной зоне после разрушения биогеоценоза возможно длительное использование плодородия почвы. В тропиках плодородия почвы достаточно на 2-3 года, а затем она превращается в пустыню. Здесь разрушение гуминовых кислот идет быстро. Этому способствуют высокая температура, влажность и аэрация. В умеренной зоне в почве содержится до 55% углерода, а в тропиках - только до 25%. Вот почему нельзя вырубать тропические леса, чтобы предотвратить опустынивание планеты.
Таким образом, поток энергии, входящий в экосистему, далее разбивается как бы на два основных русла - пастбищное и детритное. В конце каждого из них энергия теряется безвозвратно, потому что растения в процессе фотосинтеза не могут использовать тепловую длинноволновую энергию.
Соотношение количества энергии, проходящей через пастбищные и детритные цепи, в разных типах экосистем разное. Потеря энергии в пищевых цепях может быть восполнена только за счет поступления новых порций. Это осуществляется за счет ассимиляции солнечной энергии растениями. Поэтому в экосистеме не может быть круговорота энергии, аналогично круговороту вещества. Экосистема функционирует только за счет направленного потока энергии - постоянного поступления ее в виде солнечного излучения, либо в виде готового органического вещества.

Пищевая цепь состоит из организмов разных видов. В то же время организмы одного вида могут входить в состав разных пищевых цепей. Поэтому цепи питания переплетаются, образуя сложные пищевые сети, охватывающие все экосистемы планеты.[ ...]

Пищевая (трофическая) цепь - это перенос энергии от ее источника - продуцентов - через ряд организмов. Пищевые цепи можно разделить на два основных типа: пастбищная цепь, которая начинается с зеленого растения и идет далее к пасущимся растительноядным животным и к хищникам, и детритная цепь (от латинского истертый), которая начинается от продуктов распада мертвого органического вещества. В формировании этой цепи решающую роль играют различные микроорганизмы, которые питаются мертвым органическим веществом и минерализуют его, вновь превращая в простейшие неорганические соединения. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом. Часто животное, потребляющее живое органическое вещество, поедает и микробов, потребляющих в пищу неживое органическое вещество. Таким образом, пути потребления пищи разветвляются, образуя так называемые пищевые сети.[ ...]

Пищевая сеть - сложное переплетение в сообществе пищевых цепей.[ ...]

Пищевые сети образуются потому, что практически любой член какой-либо пищевой цепи одновременно является звеном и в другой пищевой цепи: он потребляет и его потребляют несколько видов других организмов. Так, в пище лугового волка - койота насчитывают до 14 тыс. видов животных и растений. Вероятно, таков же порядок числа видов, участвующих в поедании, разложении и деструкции веществ трупа койота.[ ...]

Пищевые цепи и трофические уровни. Прослеживая пищевые взаимоотношения между членами биоценоза («кто кого и сколько поедает»), можно построить пищевые цепи питания различных организмов. Примером длинной пищевой цепи может служить последовательность обитателей арктического моря: «микроводоросли (фитопланктон) -> мелкие растительноядные ракообразные (зоопланктон) - плотоядные планктонофаги (черви, ракообразные, моллюски, иглокожие) -> рыбы (возможны 2-3 звена последовательности хищных рыб) -> тюлени -> белый медведь». Цепи наземных экосистем обычно короче. Пищевая цепь, как правило, искусственно выделяется из реально существующей пищевой сети - сплетения многих цепей питания.[ ...]

Пищевая сеть - это сложная сеть пищевых взаимоотношений.[ ...]

Пищевые цепи подразумевают линейный поток ресурсов от одного трофического уровня к следующему (рис. 22.1, а). В такой конструкции взаимодействия между видами просты. Однако никакая система потоков ресурсов в БЭ не следует этой простой структуре; они гораздо больше напоминают сетевую структуру (рис. 22.1, Ь). Здесь виды на одном трофическом уровне питаются несколькими видами на следующем, более низком уровне и широко распространена всеядность (рис. 22.1, с). Наконец, полностью определенная пищевая сеть может продемонстрировать различные особенности: множество трофических уровней, хищничество и всеядность (рис. 22.1, [ ...]

Множество пищевых цепей, переплетаясь в биоценозах и экосистемах, образуют пищевые сети. Если общую цепь питания изобразить в виде строительных блоков, условно представляющих собой количественное соотношение усваиваемой на каждом этапе энергии, и сложить их друг на друга, получится пирамида. Ее называют экологической пирамидой энергий (рис.5).[ ...]

Диаграммы пищевых цепей и пищевых сетей. Точки обозначают виды, линии обозначают взаимодействия. Более высокие виды являются хищниками по отношению к более низким, поэтому ресурсы текут снизу вверх.[ ...]

В первом типе пищевой сети поток энергии идет от растений к растительноядным животным, а далее к консументам более высокого порядка. Это сеть выедания, или пастбищная сеть. Вне зависимости от величины биоценоза и места обитания растительноядные животные (наземные, водные, почвенные) пасутся, выедают зеленые растения и передают энергию на следующие уровни (рис. 96).[ ...]

В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых в свою очередь может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме.[ ...]

[ ...]

Эта схема не только иллюстрирует переплетение пищевых связей и показывает три трофических уровня, но и выявляет тот факт, что некоторые организмы занимают промежуточное положение в системе трех основных трофических уровней. Так, строящие ловчую сеть личинки ручейника питаются растениями и животными, занимая промежуточное положение между первичными и вторичными консументами.[ ...]

Первичным источником пищевых ресурсов человека были те экосистемы, в которых он мог существовать. Способами добывания пищи были собирательство и охота, причем по мере развития изготовления и использования все более совершенных орудий увеличивалась доля охотничьей добычи, значит, и доля мяса, то есть полноценных белков, в рационе. Способность организовывать большие устойчивые коллективы, развитие речи, позволяющей организовывать сложное согласованное поведение множества людей, сделали человека «суперхищником», занявшим верхнюю позицию в пищевых сетях тех экосистем, которые он осваивал по мере расселения по Земле. Так, единственным врагом мамонта был человек, который, вместе с отступлением ледника и изменением климата стал одной из причин гибели этих северных слонов как вида.[ ...]

[ ...]

На основании изучения 14 пищевых сетей в сообществах Коэн обнаружил удивительное постоянство отношения числа «типов» жертвы к числу «типов» хищников, составлявшее примерно 3: 4. Дальнейшие данные, подтверждающие это соотношение, приводят Брайанд и Коэн , исследовавшие 62 аналогичные сети. График такой пропорциональности имеет тангенс угла наклона менее 1 как во флуктуирующих, так и в постоянных средах. Использование «типов» организмов, а не подлинных видов обычно дает не вполне объективные результаты , однако, хотя полученное при этом отношение жертва/хищник, возможно, занижено, его постоянство примечательно.[ ...]

В БЭ многие (но определенно не все) пищевые сети имеют большое количество первичных производителей, меньше потребителей и совсем немного высших хищников, что придает сети форму, приведенную на рис. 22.1, Ь. Всеядные в этих системах могут быть редки, в то время как редуценты находятся в изобилии. Модели пищевых сетей обеспечили потенциальную основу для плодотворного анализа потоков ресурсов как в БЭ, так и в ПЭ. Сложности возникают, однако, когда пытаются количественно определить потоки ресурсов и подвергнуть структуру сети и свойства стабильности математическому анализу. Оказывается, что многие из необходимых данных трудно выявить с определенностью, особенно в том, что касается организмов, которые функционируют более чем на одном трофическом уровне. Эго свойство создает не основную сложность исследований потоков ресурсов, но оно серьезно усложняет анализ стабильности. Утверждение, что более сложные системы являются более стабильными - поскольку разрушение одного вида или путей потоков просто переводит энергию и ресурсы на другие пути, а не блокирует путь для всего потока энергии или ресурсов - пока горячо обсуждается.[ ...]

Анализ большого числа промышленных пищевых сетей может, таким образом, выявить характеристики, не показанные в других подходах. В проекте экосистемы на рис. 22.5, например, сетевой анализ может отразить отсутствующий сектор или тип промышленной деятельности, который способен увеличить связанность. Эти темы дают богатую область для детальных исследований.[ ...]

Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме.[ ...]

Некоторый интерес представляет длина пищевых цепей. Ясно, что уменьшение доступной энергии при переходе к каждому последующему звену ограничивает длину пищевых цепей. Однако доступность энергии, видимо, не единственный фактор, поскольку длинные пищевые цепи часто встречаются в неплодородных системах, например в олиготрофных озерах, а короткие - в очень продуктивных, или эвтрофных, системах. Быстрое продуцирование питательного растительного материала может стимулировать быстрое выедание, в результате чего поток энергии концентрируется на первых двух-трех трофических уровнях. Эвтрофикация озер также изменяет состав планктонной пищевой сети «фитопланктон-крупный зоопланктон-хищная рыба», превращая его в микробно-детритную микрозоопланктонную систему, не столь способствующую поддержанию спортивного рыболовства.[ ...]

При неизменном энергетическом потоке в пищевой сети, или цепи, более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные1. Значительная часть энергии уходит на поддержание обмена веществ. Это правило «метаболизм и размеры особей», или правило Ю. Одума, обычно не реализуется в водных биоценозах при учете реальных условий обитания в них (в идеальных условиях оно имеет всеобщее значение). Связано это с тем, что мелкие водные организмы в значительной мере поддерживают свой обмен веществ за счет внешней энергии непосредственно окружающей их среды.[ ...]

Почвенная микрофлора имеет хорошо развитую пищевую сеть и мощный компенсационный механизм, основанный на функциональной взаимозаменяемости одних видов другими. Кроме того, благодаря лабильному ферментативному аппарату многие виды могут легко переключаться с одного питательного субстрата на другой, обеспечивая тем самым стабильность экосистемы. Это существенно усложняет оценку воздействия на нее различных антропогенных факторов и требует использование интегральных показателей.[ ...]

[ ...]

Прежде всего рандомизированно составленные пищевые сети часто содержат биологически бессмысленные элементы (например, петли такого типа: А поедает В, В поедает С, С поедает А). Анализ «осмысленно» построенных сетей (Lawlor, 1978; Pimm, 1979а) показывает, что (а) они устойчивее рассмотренных и (б) нет такого резкого перехода к неустойчивости (по сравнению с приведенным выше неравенством), хотя устойчивость по-прежнему падает с ростом сложности.[ ...]

21.2

Безусловно, да, если не в составе биогеоценозов - низших ступеней иерархии экосистем,- то уж, во всяком случае, в рамках биосферы. Люди из этих сетей получают пищу (агроценозы- видоизмененные экосистемы с природной основой). Только из «дикой» природы люди извлекают топливо - энергию, основные рыбные ресурсы, другие «дары природы». Мечта В. И. Вернадского о полной автотрофности человечества пока остается иррациональной мечтой1 - эволюция необратима (правило Л. Доло), как и исторический процесс. Без подлинных автотрофов, в основном растений, человек не может существовать как гетеротрофный организм. Наконец, если бы он физически не был включен в пищевые сети природы, то его тело после смерти не подвергалось бы разрушению организмами-редуцентами, и Земля была бы завалена несгнившими трупами. Тезис о раздельности человека и природных пищевых цепей основан на недоразумении и явно ошибочен.[ ...]

В гл. 17 анализируются способы объединения различных групп консументов и их пищи в сеть взаимодействующих элементов, по которой происходит передача вещества и энергии. В гл. 21 мы возвратимся к этой теме и рассмотрим влияние структуры пищевой сети на динамику сообществ в целом, обратив особое внимание на особенности их структуры, способствующие стабильности.[ ...]

Четырех примеров будет достаточно, чтобы проиллюстрировать основные особенности пищевых цепей, пищевых сетей и трофических уровней. Первый пример - регион Крайнего Севера, называемый тундрой, где обитает сравнительно немного видов организмов, успешно приспособившихся к низким температурам. Поэтому пищевые цепи и пищевые сети здесь относительно просты. Один из основателей современной экологии, британский эколог Ч. Элтон, поняв это, уже в 20-30-х годах нашего века занялся изучением арктических земель. Он одним из первых четко обрисовал принципы и концепции, связанные с пищевыми цепями (Elton, 1927). Растения тундры - лишайник («олений мох») С1а donia, злаки, осоки и карликовые ивы составляют пищу оленя карибу в североамериканской тундре и его экологического аналога в тундре Старого Света - северного оленя. Эти животные в свою очередь служат пищей волкам и человеку. Тундровые растения поедают также лемминги - пушистые короткохвостые грызуны, напоминающие медведя в миниатюре, и тундряные куропатки. Всю долгую зиму и все короткое лето песцы и полярные совы питаются в основном леммингами. Любое значительное изменение численности леммингов отражается и на других трофических уровнях, так как других источников пищи мало. Вот почему численность некоторых групп арктических организмов сильно колеблется от сверхизобилия до почти полного исчезновения. Подобное часто случалось в человеческом обществе, если оно зависело от одного или нескольких немногих источников пищи (вспомним «картофельный голод» в Ирландии1).[ ...]

Одно из следствий гипотезы устойчивости, которое в прин-пице можно проверить, это то, что в средах с менее предсказуемым поведением пищевые цепи должны быть короче, поскольку в них, по-видимому, сохраняются лишь наиболее упругие пищевые сети, а у коротких цепей упругость выше. Брай-анд (Briand, 1983) разделил 40 пищевых сетей (по собранным им данным) на связанные с изменчивой (позиции 1-28 в табл. 21.2) и постоянной (позиции 29-40) средами. Достоверных различий в средней длине максимальных пищевых цепей между этими группами не обнаружилось: число трофических уровней составило 3,66 и 3,60 соответственно (рис. 21.9). Эти положения еще нуждаются в критической проверке.[ ...]

Кроме того, результаты моделирования становятся иными, когда учитывается, что популяции консументов испытывают влияние со стороны пищевых ресурсов, а те от воздействия консументов не зависят (¡3,/Х), 3(/ = 0: так называемая «система, регулируемая донором»), В пищевой сети подобного типа устойчивость либо не зависит от сложности, либо повышается вместе с ней (DeAngelis, 1975). На практике единственной группой организмов, которая обычно удовлетворяет этому условию, являются детритофаги.[ ...]

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Например, явление «трофического каскада», когда в результате хищничества происходит изменение плотности, биомассы или продуктивности популяции, сообщества или трофического уровня по более чем одной линии пищевой сети (Пейс и др., 1999). П. Митчел (2001) приводит такой пример: морские выдры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению бурых водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на свои места обитания.[ ...]

Зеленые растения преобразуют энергию фотонов солнечного света в энергию химических связей сложных органических соединений, которые продолжают свой путь по разветвленным пищевым сетям природных экосистем. Однако в некоторых местах (например, на болотах, в устьях рек и морях) часть органических растительных веществ, попав на дно, покрывается песком раньше, чем станет пищей для животных или микроорганизмов. При наличии определенной температуры и давления грунтовых пород в течение тысяч и миллионов лет из органических веществ образуются уголь, нефть и прочее ископаемое топливо или, по выражению В. И. Вернадского, «живое вещество уходит в геологию».[ ...]

Примеры пишевых цепей: растения - растительноядные животные -хищник; злак-полевая мышь-лиса; кормовые растения - корова - человек. Как правило, каждый вид питается не одним-единственным видом. Поэтому пищевые цепи переплетаются, образуя пищевую сеть. Чем сильнее организмы связаны между собой пищевыми сетями и другими взаимодействиями, тем устойчивее сообщество против возможных нарушений. Естественные, ненарушенные экосистемы стремятся к равновесию. Состояние равновесия основано на взаимодействии биотических и абиотических факторов среды.[ ...]

Например, уничтожение ядохимикатами хозяйственно значимых вредителей в лесах, отстрел части популяций животных, вылов отдельных видов промысловых рыб - это частичные помехи, поскольку они влияют лишь на отдельные звенья пищевых цепей, не затрагивая пищевых сетей в целом. Чем сложнее пищевая сеть, структура экосистемы, тем значимость таких помех меньше, и наоборот. В то же время выброс и сброс в атмосферу или воду химических ксенобиотиков, например оксидов серы, азота, углеводородов, соединений фтора, хлора, тяжелых металлов, радикально меняет качество среды, создает помехи на уровне продуцентов в целом, а значит, и ведет к полной деградации экосистемы: так как погибает основной трофический уровень - продуценты.[ ...]

Энергозависимая пропускная способность = (/гЛ -)/к В. Энергетическая схема примитивной системы в Уганде. Г. Энергетическая схема сельского хозяйства в Индии, где главным источником энергии служит свет, но поток энергии через скот н зерноаые регулируется человеком. Д. Энергетическая сеть высокомеханизированного сельского хозяйства. Высокие урожаи основаны на значительном вложении энергии путем использования ископаемого топлива, за счет которого выполняется работа, ранее производившаяся человеком и животными; при этом выпадает пищевая сеть животных и растений, которых приходилось «кормить» в двух предыдущих системах.[ ...]

Был предпринят целый ряд попыток проанализировать математически зависимость между сложностью сообщества и его устойчивостью, в большинстве из которых авторы пришли к примерно одинаковым выводам. Обзор таких публикаций дал Мей (May, 1981). В качестве примера рассмотрим его работу (May, 1972), демонстрирующую как сам метод, так и его недостатки. На каждый вид влияли его взаимодействия со всеми остальными видами; количественно влияние плотности вида / на рост численности i оценивалось показателем р. При полном отсутствии влияния равен нулю, у двух конкурирующих видов Рц и Pji отрицательны, в случае хищника (¿) и жертвы (/) Ру положителен, a jjji - отрицателен.[ ...]

Кислотные осадки вызывают летальные последствия для жизни в реках и водоемах. Многие озера Скандинавии и восточной части Северной Америки оказались настолько закисле-ны, что рыба не может не только нереститься в них, но и просто выжить. В 70-е годы в половине озер указанных регионов рыба полностью исчезла. Наиболее опасно подкисление океанических мелководий, ведущее к невозможности размножения многих морских беспозвоночных животных, что может вызвать разрыв пищевых сетей и глубоко нарушить экологическое равновесие в Мировом океане.[ ...]

Модели контролируемых донором взаимодействий по ряду признаков отличаются от традиционных моделей взаимодействий типа хищник-жертва Лотки-Воль-терры (гл. 10). Одно из важных отличий состоит в том, что как полагают, взаимодействующие группы видов, для которых характерна контролируемая донором динамика, особенно устойчивы и, далее, что эта устойчивость фактически не зависит от увеличения видового разнообразия и сложности пищевой сети или даже возрастает. Эта ситуация совершенно противоположна той, в которой применима модель Лотки-Вольтерры. Подробнее эти важные вопросы, касающиеся сложности пищевой сети и устойчивости сообщества, мы обсудим в гл. 21.

Виды в биоценозе связаны между собой процессами обмена веществом и энергии, т. е. пищевыми взаимоотношениями. Прослеживая пищевые взаимоотношения между членами биоценоза (“кто кого и сколько поедает”), можно построить пищевые цепи и сети .

Трофические цепи (от греч. trophe – пища) – пищевые цепи – это последовательный перенос вещества и энергии. Например, пищевая цепь животных арктического моря: микроводоросли (фитопланктон) → мелкие растительноядные ракообразные (зоопланктон) → плотоядные планктоно-фаги (черви, моллюски, ракообразные) → рыбы (возможны 2-4 звена последовательности хищных рыб) → тюлени → белые медведи. Эта пищевая цепь длинная, пищевые цепи наземных экосистем более короткие, так как на суше больше потери энергии. Различают несколько типов наземных пищевых цепей .

1. Пастбищные пищевые цепи (цепи эксплуататоров) начинаются с продуцентов. При переходе с одного трофического уровня на другой происходит увеличение размеров особей при одновременном уменьшении плотности популяций, скорости размножения и продуктивности по массе.

Трава → полёвки → лисица

Трава → насекомые → лягушка → цапля → коршун

Яблоня → щитовка → наездник

Корова → слепень → бактерии → фаги

    Детритные цепи. Включают только редуцентов.

Опавшие листья → плесневые грибы → бактерии

Любой член какой-либо пищевой цепи одновременно является звеном и другой пищевой цепи: он потребляет и его потребляют несколько видов других организмов. Так образуются пищевые сети. Например, в пище лугового волка-койота насчитывают до 14 тысяч видов животных и растений. В последовательности переноса веществ и энергии от одной группы организмов к другой различают трофические уровни . Обычно цепи не превышают 5–7 уровней. Первый трофический уровень составляют продуценты, т. к. питаться солнечной энергией могут только они. На всех остальных уровнях – травоядные (фитофаги), первичные хищники, вторичные хищники и т. д. – идёт расход первоначально накопленной энергии на поддержание обменных процессов.

Пищевые отношения удобно представлять в виде трофических пирамид (численности, биомасс, энергий). Пирамида численности – отображение числа особей на каждом трофическом уровне в единицах (штуках).

Она имеет очень широкое основание и резкое сужение к конечным консументам. Это обычный вид пирамиды для травяных сообществ – луговых и степных биоценозов. Если рассмотреть лесное сообщество, то картина может быть искажена: на одном дереве могут кормиться тысячи фитофагов или на одном трофическом уровне окажутся тля и слон (разные фитофаги). Тогда численность консументов может быть больше численности продуцентов. Чтобы преодолеть возможные искажения используют пирамиду биомасс. Выражается она в единицах тоннажа сухой или сырой массы: кг, т и т. д.

В наземных экосистемах биомасса растений всегда больше биомассы животных. Иначе пирамида биомассы выглядит для водных, особенно морских экосистем. Биомасса животных намного больше биомассы растений. Эта неправильность связана с тем, что пирамиды биомасс не учитывают продолжительность существования поколений особей на разных трофических уровнях и скорости образования и выедания биомассы. Главный продуцент морских экосистем – фитопланктон. За год в океане может смениться до 50 поколений фитопланктона. За то время, пока хищные рыбы (а тем более киты) накопят свою биомассу, сменится множество поколений фитопланктона и его суммарная биомасса будет намного больше. Поэтому универсальным способом выражения трофической структуры экосистем являются пирамиды продуктивности, обычно их называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Поглощенная солнечная энергия преобразуется в энергию химических связей углеводов и других органических веществ. Часть веществ окисляется в процессе дыхания растений и освобождает энергию. Эта энергия рассеивается в конечном итоге в виде тепла. Оставшаяся энергия обуславливает прирост биомассы. Суммарная биомасса стабильной экосистемы относительно постоянна. Таким образом, при переходе от одного трофического уровня к другому часть доступной энергии не воспринимается, часть отдается в виде тепла, часть расходуется на дыхание. В среднем при переходе с одного трофического уровня на другой общая энергия уменьшается примерно в 10 раз. Эта закономерность называется правилом пирамиды энергий Линдемана (1942 г.) или правилом 10 %. Чем длиннее пищевая цепь, тем меньше к ее концу остается доступной энергии, поэтому число трофических уровней никогда не бывает слишком большим.

Если энергия и основная масса органического вещества при переходе на следующую ступень экологической пирамиды уменьшается, то накопление попадающих в организм веществ, не участвующих в нормальном обмене веществ (синтетических ядов), примерно в той же пропорции увеличивается. Это явление называется правилом биологического усиления.

Основные принципы функционирования экологических систем

    Постоянный приток солнечной энергии – необходимое условие существования экосистемы.

    Круговорот биогенов. Движущими силами круговорота веществ служат потоки энергии солнца и деятельность живого вещества. Благодаря круговороту биогенных элементов создается устойчивая организованность всех экосистем и биосферы в целом, осуществляется их нормальное функционирование.

    Снижение биомассы на высших трофических уровнях : уменьшение количества доступной энергии обычно сопровождается уменьшением биомассы и численности особей на каждом трофическом уровне (вспомним пирамиды энергии, численности и биомассы).

Подробно эти принципы мы уже осветили в ходе лекции.

Представители разных трофических уровней связаны между собой односторонне направленной передачей биомассы в пищевые цепи. При каждом переходе на следующий трофический уровень часть доступной энергии не воспринимается, часть отдается в виде тепла и часть расходуется на дыхание. При этом общая энергия каждый раз уменьшается в несколько раз. Следствие этого - ограниченная длина пищевых цепей. Чем короче пищевая цепь или чем ближе организм к ее началу, тем больше количество доступной энергии в ней.

Пищевые цепи хищников идут от продуцентов к растительноядным, поедаемым мелкими плотоядными, а они служат пищей более крупным хищникам и т.д. По мере продвижения по цепи хищников животные увеличиваются в размерах и уменьшаются в числе. Удлинение цепи происходит благодаря участию в ней хищников. Относительно простая и короткая пищевая цепь хищников включает консументов второго порядка:

Трава (продуцент ) -» Кролики (консумент I порядка) ->

Лисица (консумент II порядка).

Более длинная и сложная цепь включает консументов пятого порядка:

Сосна -> Тли -> Божьи коровки -> Пауки ->

Насекомоядные птицы -> Хищные птицы.

Трава Травоядные млекопитающие -> Блохи -> Жгутиконосцы.

В детритных цепях консументами являются детритофаги, относящиеся к различным систематическим группам: мелкие животные, преимущественно беспозвоночные, которые живут в почве и питаются опавшей листвой, или бактерии и грибы, разлагающие органические вещества. В большинстве случаев деятельность обеих групп детрито- фагов характеризуется строгой согласованностью: животные создают условия для работы микроорганизмов, разделяя трупы животных и мертвые растения на мелкие части.

Детритные цепи отличает от пастбищных цепей также то обстоятельство, что большое число животных-детритофагов образует своего рода сообщество, члены которого связаны друг с другом разнообразными трофическими связями (рис. 10.4).

Рис. 10.4.

В данном случае можно говорить о существовании пищевых сетей детритофагов, отделенных от линейных цепей хищников. Кроме того, многие детритофаги характеризуются широким спектром питания и могут использовать, в зависимости от обстоятельств, наряду с детритом водоросли, мелких животных и т.п.

Рис. 10.5. Важнейшие связи в пищевых сетях: а - американской прерии ; б - экосистемы северных морей для сельди

Пищевые цепи, начинающиеся с зеленых растений и от мертвого органического вещества, чаще всего представлены в экосистемах совместно, но почти всегда одна из них доминирует над другой. Тем не менее в некоторых специфических средах (например, абиссальной и подземной), где существование организмов с хлорофиллом невозможно из-за отсутствия света, сохраняются пищевые цепи только детритного типа.

Пищевые цепи не изолированы одна от другой, а тесно переплетены. Они составляют так называемые пищевые сети. Принцип их образования состоит в следующем. Каждый продуцент имеет не одного, а несколько консументов. В свою очередь консументы, среди которых преобладают полифаги, пользуются не одним, а несколькими источниками питания. Для иллюстрации приведем примеры сравнительно простой (рис. 10.5а) и сложной (рис. 10.55) пищевых сетей.

В сложном природном сообществе те организмы, которые получают пищу от растений, занимающих первый трофический уровень, через одинаковое число этапов, считаются принадлежащими к одному трофическому уровню. Так, растительноядные занимают второй трофический уровень (уровень первичных консументов), хищники, поедающие растительноядных, - третий (уровень вторичных консументов), а вторичные хищники - четвертый (уровень третичных консументов). Необходимо подчеркнуть, что трофическая классификация делит на группы не сами виды, а типы их жизнедеятельности. Популяция одного вида может занимать один или более трофических уровней, в зависимости от того, какие источники энергии эти виды используют. Точно так же любой трофический уровень представлен не одним, а несколькими видами, в результате чего цепи питания сложно переплетены.

Итак, в основе цепей питания лежат зеленые растения. Зелеными растениями питаются и насекомые, и позвоночные животные, которые, в свою очередь, служат источником энергии и вещества для построения тела потребителей второго, третьего и т.д. порядков. Общая закономерность заключается в том, что количество особей, включенных в пищевую цепь, в каждом звене последовательно уменьшается и численность жертв значительно больше численности их потребителей. Это происходит потому, что в каждом звене пищевой цепи, на каждом этапе переноса энергии 80-90% ее теряется, рассеиваясь в форме теплоты. Это обстоятельство ограничивает число звеньев цепи (обычно их бывает от 3 до 5). В среднем из 1 тыс.кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить из этого количества 10 кг своей биомассы 4 , а вторичные хищники - только 1кг. Следовательно, живая биомасса в каждом последующем звене цепи прогрессивно уменьшается. Эта закономерность носит названиеПравила экологической пирамиды 5 .

IV.Взаимоотношения между организмами

1.Биотические связи

Среди огромного разнообразия взаимосвязей живых существ выделяют определенные типы отношений, имеющие много общего у организмов разных систематических групп.

1.Симбиоз

Симбиоз 1 - сожительство (от.греч.сим - вместе, биос - жизнь) - форма взаимоотношения, из которых оба партнера или хотя бы один извлекают пользу.

Симбиоз подразделяется на мутуализм, протокооперацию и комменсализм.

Мутуализм 2 - форма симбиоза, при которой присутствие каждого из двух видов становится обязательным для обоих, каждый из сожителей получает относительно равную пользу, и партнеры (или один из них) не могут существовать друг без друга.

Типичный пример мутуализма - отношения термитов и жгутиковых простейших, обитающих в их кишечнике. Термиты питаются древесиной, однако у них нет ферментов для переваривания целлюлозы. Жгутиконосцы вырабатывают такие ферменты и переводят клетчатку в сахара. Без простейших - симбионтов - термиты погибают от голода. Сами же жгутиконосцы помимо благоприятного микроклимата получают в кишечнике пищу и условия для размножения.

Протокооперация 3 - форма симбиоза, при которой совместное существование выгодно для обоих видов, но не обязательно для них. В этих случаях отсутствует связь именно этой, конкретной пары партнеров.

Комменсализм - форма симбиоза, при которой один из сожительствующих видов получает какую-либо пользу, не принося другому виду ни вреда, ни пользы.

Комменсализм, в свою очередь, подразделяется на квартиранство, сотрапезничество, нахлебничество.

"Квартиранство" 4 - форма комменсализма, при которой один вид использует другой (его тело или его жилище) в качестве убежища или своего жилья. Особую важность приобретает использование надежных убежищ для сохранения икры или молоди.

Пресноводный горчак откладывает икру в мантийную полость двухстворчатых моллюсков - беззубок. Отложенные икринки развиваются в идеальных условиях снабжения чистой водой.

"Сотрапезничество" 5 - форма комменсализма, при которой несколько видов потребляют разные вещества или части одного и того же ресурса.

"Нахлебничество" 6 - форма комменсализма, при которой один вид потребляет остатки пищи другого.

Примером перехода нахлебничества в более тесные отношения между видами служат взаимоотношения рыбы-прилипалы, обитающей в тропических и субтропических морях, с акулами и китообразными. Передний спинной плавник прилипалы преобразовался в присоску, с помощью которой та прочно удерживается на поверхности тела крупной рыбы. Биологический смысл прикрепления прилипал заключается в облегчении их передвижения и расселения.