Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

Вчера мир потрясла сенсация: ученые наконец-то обнаружили гравитационные волны, существование которых предсказывал Эйнштейн еще сто лет назад. Это прорыв. Искажение пространства-времени (это и есть гравитационные волны - сейчас объясним, что к чему) обнаружили в обсерватории ЛИГО, а одним из ее основателей является - кто бы вы думали? - Кип Торн, автор книги .

Рассказываем, почему открытие гравитационных волн так важно, что сказал Марк Цукерберг и, конечно, делимся историей от первого лица. Кип Торн как никто другой знает, как устроен проект, в чем его необычность и какое значение ЛИГО имеет для человечества. Да-да, все так серьезно.

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн - столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры - очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Вот так можно представить гравитационные волны, идущие к Земле, например, от червоточины. Рисунок из книги «Интерстеллар. Наука за кадром»

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны .

И знаете что? Совсем недавно , что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

Так, по мнению ученых, выглядит катастрофа – слияние черных дыр, — .

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие - начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной - объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны - наши первые замечательные образцы», - сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью : «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне. На рисунке из книги «Интерстеллар. Наука за кадром» - пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение - тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Гравитационные волны, проходящие через детектор ЛИГО.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Центр управления ЛИГО, откуда отправляют команды детектору и следят за полученными сигналами. Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. Фото из книги «Интерстеллар. Наука за кадром»

Сейчас ЛИГО - интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» - когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

Столкновение двух невращающихся черных дыр. Модель из книги «Интерстеллар. Наука за кадром»

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами - как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания - прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

Люди разгадали далеко на все загадки Вселенной. Все еще впереди.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Аппарат BICEP2 . Изображение из книги «Интерстеллар. Наука за кадром»

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след - поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, - в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов - инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Не так уж и далек день, когда люди покинут пределы нашей галактики.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн - самое большое открытие в современной науке. Альберт Эйнштейн - один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет - думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору . Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

Официальным днем открытия (детектирования) гравитационных волн считается 11 февраля 2016 года. Именно тогда, на состоявшейся в Вашингтоне пресс-конференции, руководителями коллаборации LIGO было объявлено, что коллективу исследователей удалось впервые в истории человечества зафиксировать это явление.

Пророчества великого Эйнштейна

О том, что гравитационные волны существуют, еще в начале прошлого века (1916 г.) предположил Альберт Эйнштейн в рамках сформулированной им Общей теории относительности (ОТО). Остается только поражаться гениальным способностям знаменитого физика, который при минимуме реальных данных смог сделать такие далеко идущие выводы. Среди множества прочих предсказанных физических явлений, нашедших подтверждение в последующее столетие (замедление течения времени, изменение направления электромагнитного излучения в гравитационных полях и пр.) практически обнаружить наличие этого типа волнового взаимодействия тел до последнего времени не удавалось.

Гравитация - иллюзия?

Вообще, в свете Теории относительности гравитацию сложно назвать силой. возмущения или искривления пространственно-временного континуума. Хорошим примером, иллюстрирующим данный постулат, может служить натянутый кусок ткани. Под тяжестью размещенного на такой поверхности массивного предмета образуется углубление. Прочие объекты при движении вблизи этой аномалии будут изменять траекторию своего движения, как бы "притягиваясь". И чем больше вес предмета (больше диаметр и глубина искривления), тем выше "сила притяжения". При его движении по ткани, можно наблюдать возникновение расходящейся "ряби".

Нечто подобное происходит и в мировом пространстве. Любая ускоренно движущаяся массивная материя является источником флуктуаций плотности пространства и времени. Гравитационная волна с существенной амплитудой, образуется телами с чрезвычайно большими массами или при движении с огромными ускорениями.

Физические характеристики

Колебания метрики пространство-время проявляют себя, как изменения поля тяготения. Это явление иначе называют пространственно-временной рябью. Гравитационная волна воздействует на встреченные тела и объекты, сжимая и растягивая их. Величины деформации очень незначительны - порядка 10 -21 от первоначального размера. Вся трудность обнаружения этого явления заключалась в том, что исследователям необходимо было научиться измерять и фиксировать подобные изменения с помощью соответствующей аппаратуры. Мощность гравитационного излучения также чрезвычайно мала - для всей Солнечной системы она составляет несколько киловатт.

Скорость распространения гравитационных волн незначительно зависит от свойств проводящей среды. Амплитуда колебаний с удалением от источника постепенно уменьшается, но никогда не достигает нулевого значения. Частота лежит в диапазоне от нескольких десятков до сотен герц. Скорость гравитационных волн в межзвездной среде приближается к скорости света.

Косвенные доказательства

Впервые теоретическое подтверждение существования волн тяготения удалось получить американскому астроному Джозефу Тейлору и его ассистенту Расселу Халсу в 1974 году. Изучая просторы Вселенной с помощью радиотелескопа обсерватории Аресибо (Пуэрто-Рико), исследователи открыли пульсар PSR B1913+16, представляющий собой двойную систему нейтронных звезд, вращающихся вокруг общего центра масс с постоянной угловой скоростью (довольно редкий случай). Ежегодно период обращения, изначально составляющий 3,75 часа, сокращается на 70 мс. Это значение вполне соответствует выводам из уравнений ОТО, предсказывающих увеличение скорости вращения подобных систем вследствие расходования энергии на генерацию гравитационных волн. В дальнейшем было обнаружено несколько двойных пульсаров и белых карликов с аналогичным поведением. Радиоастрономам Д. Тейлору и Р. Халсу в 1993 году была присуждена Нобелевская премия по физике за открытие новых возможностей изучения полей тяготения.

Ускользающая гравитационная волна

Первое заявление о детектировании волн тяготения поступило от ученого Мэрилендского университета Джозефа Вебера (США) в 1969 году. Для этих целей он использовал две гравитационные антенны собственной конструкции, разнесенные на расстояние в два километра. Резонансный детектор представлял собой хорошо виброизолированный цельный двухметровый цилиндр из алюминия, оснащенный чувствительными пьезодатчиками. Амплитуда, якобы зафиксированных Вебером колебаний оказалась более чем в миллион раз выше ожидаемого значения. Попытки других ученых с помощью подобного оборудования повторить "успех" американского физика положительных результатов не принесли. Через несколько лет работы Вебера в данной области были признаны несостоятельными, но дали толчок развития "гравитационному буму", привлекшему в эту область исследований многих специалистов. Кстати, сам Джозеф Вебер до конца своих дней был уверен, что принимал гравитационные волны.

Совершенствование приемного оборудования

В 70-х годах ученый Билл Фэйрбанк (США) разработал конструкцию гравитационно-волновой антенны, охлаждаемой с применением сквидов - сверхчувствительных магнитомеров. Существующие на тот момент технологии не позволили увидеть изобретателю свое изделие, реализованное в "металле".

По такому принципу выполнен гравитационный детектор Auriga в Национальной леньярской лаборатории (Падуя, Италия). В основе конструкции алюминиево-магниевый цилиндр, длиной 3 метра и диаметром 0,6 м. Приемное устройство массой 2,3 тонны подвешено в изолированной, охлажденной почти до абсолютного нуля вакуумной камере. Для фиксации и детектирования сотрясений используется вспомогательный килограммовый резонатор и измерительный комплекс на основе ЭВМ. Заявленная чувствительность оборудования 10 -20 .

Интерферометры

В основу функционирования интерференционных детекторов гравитационных волн заложены те же принципы, по которым работает интерферометр Майкельсона. Испускаемый источником лазерный луч делится на два потока. После многократных отражений и путешествий по плечам устройства потоки вновь сводятся воедино, и по итоговому судят о том, воздействовали ли на ход лучей какие-либо возмущения (например, гравитационная волна). Подобное оборудование создано во многих странах:

  • GEO 600 (Ганновер, Германия). Длина вакуумных тоннелей 600 метров.
  • ТАМА (Япония) с плечами в 300 м.
  • VIRGO (Пиза, Италия) - совместный франко-итальянский проект, запущенный в 2007 году с трехкилометровыми тоннелями.
  • LIGO (США, Тихоокеанское побережье), ведущий охоту за волнами тяготения с 2002 года.

Последний стоит рассмотреть более подробно.

LIGO Advanced

Проект был создан по инициативе ученых Массачусетского и Калифорнийского технологических институтов. Включает в себя две обсерватории, разнесенные на 3 тыс. км, в и Вашингтон (города Ливингстон и Хэнфорд) с тремя идентичными интерферометрами. Длина перпендикулярных вакуумных тоннелей составляет 4 тыс. метров. Это самые большие на сегодняшний момент действующие подобные сооружения. До 2011 года многочисленные попытки обнаружения волн тяготения никаких результатов не принесли. Проведенная существенная модернизация (Advanced LIGO) повысила чувствительность оборудования в диапазоне 300-500 Гц более чем в пять раз, а в низкочастотной области (до 60 Гц) почти на порядок, достигнув столь вожделенной величины в 10 -21 . Обновленный проект стартовал в сентябре 2015 года, и усилия более чем тысячи сотрудников коллаборации были вознаграждены полученными результатами.

Гравитационные волны обнаружены

14 сентября 2015 года усовершенствованные детекторы LIGO с интервалом в 7 мс зафиксировали дошедшие до нашей планеты гравитационные волны от крупнейшего явления, произошедшего на окраинах наблюдаемой Вселенной - слияния двух крупных черных дыр с массами в 29 и 36 раз превышающими массу Солнца. В ходе процесса, состоявшегося более 1,3 млрд лет назад, за считанные доли секунды на излучение волн тяготения было израсходовано около трех солнечных масс вещества. Зафиксированная начальная частота гравитационных волн составляла 35 Гц, а максимальное пиковое значение достигло отметки в 250 Гц.

Полученные результаты неоднократно подвергались всесторонней проверке и обработке, тщательно отсекались альтернативные интерпретации полученных данных. Наконец, прошлого года о прямой регистрации предсказанного Эйнштейном явления было объявлено мировому сообществу.

Факт, иллюстрирующий титаническую работу исследователей: амплитуда колебаний размеров плеч интерферометров составила 10 -19 м - эта величина во столько же раз меньше диаметра атома, во сколько он сам меньше апельсина.

Дальнейшие перспективы

Сделанное открытие еще раз подтверждает, что Общая теория относительности - не просто набор абстрактных формул, а принципиально новый взгляд на суть гравитационных волн и гравитации в целом.

В дальнейших исследованиях ученые большие надежды возлагают на проект ELSA: создание гигантского орбитального интерферометра с плечами около 5 млн км, способного обнаружить даже незначительные возмущения полей тяготения. Активизация работ в этом направлении способна поведать много нового об основных этапах развития Вселенной, о процессах, наблюдение которых в традиционных диапазонах затруднено или невозможно. Несомненно, что и черные дыры, гравитационные волны которых будут зафиксированы в будущем, многое расскажут о своей природе.

Для изучения реликтового гравитационного излучения, способного рассказать о первых мгновениях нашего мира после Большого Взрыва, потребуются более чувствительные космические инструменты. Такой проект существует (Big Bang Observer ), но его реализация, по заверениям специалистов, возможна не ранее, чем через 30-40 лет.

Валентин Николаевич Руденко делится историей своего визита в город Кашина (Италия), где он провел неделю на тогда еще только что построенной «гравитационной антенне» – оптическом интерферометре Майкельсона. По дороге к месту назначения таксист интересуется, для чего построена установка. «Тут люди думают, что это для разговора с Богом», – признается водитель.

– Что такое гравитационные волны?

– Гравитационная волна один из «переносчиков астрофизической информации». Существуют видимые каналы астрофизической информации, особая роль в «дальнем видении» принадлежит телескопам. Астрономы освоили также низкочастотные каналы – микроволновой и инфракрасный, и высокочастотные – рентгеновские и гамма-. Кроме электромагнитного излучения, мы можем регистрировать потоки частиц из Космоса. Для этого используют нейтринные телескопы – крупногабаритные детекторы космических нейтрино – частиц, которые слабо взаимодействуют с веществом и поэтому трудно регистрируются. Почти все теоретически предсказанные и лабораторно-исследованные виды «переносчиков астрофизической информации» надежно освоены на практике. Исключение составляла гравитация – самое слабое взаимодействие в микромире и самая мощная сила в макромире.

Гравитация – это геометрия. Гравитационные волны – геометрические волны, то есть волны, которые меняют геометрические характеристики пространства, когда проходят по этому пространству. Грубо говоря, это – волны, деформирующие пространство. Деформация – это относительное изменение расстояния между двумя точками. Гравитационное излучение отличается от всех других типов излучений именно тем, что они геометрические.

– Гравитационные волны предсказал Эйнштейн?

– Формально считается, что гравитационные волны предсказал Эйнштейн, как одно из следствий его общей теории относительности, но фактически их существование становится очевидным уже в специальной теории относительности.

Теория относительности предполагает, что из-за гравитационного притяжения возможен гравитационный коллапс, то есть стягивание объекта в результате коллапсирования, грубо говоря, в точку. Тогда гравитация такая сильная, что из нее даже не может выйти свет, поэтому такой объект образно называется черной дырой.

– В чем заключается особенность гравитационного взаимодействия?

Особенностью гравитационного взаимодействия является принцип эквивалентности. Согласно ему динамическая реакция пробного тела в гравитационном поле не зависит от массы этого тела. Проще говоря, все тела падают с одинаковым ускорением.

Гравитационное взаимодействие – самое слабое из известных нам сегодня.

– Кто первым пытался поймать гравитационную волну?

– Гравитационно-волновой эксперимент первым провел Джозеф Вебер из Мэрилендского университета (США). Он создал гравитационный детектор, который теперь хранится в Смитсоновском музее в Вашингтоне. В 1968-1972 году Джо Вебер провел серию наблюдений на паре пространственно разнесенных детекторов, пытаясь выделить случаи «совпадений». Прием совпадений заимствован из ядерной физики. Невысокая статистическая значимость гравитационных сигналов, полученных Вебером, вызывала критическое отношение к результатам эксперимента: не было уверенности в том, что удалось зафиксировать гравитационные волны. В дальнейшим ученые пытались увеличить чувствительность детекторов веберовского типа. На разработку детектора, чувствительность которого была адекватна астрофизическому прогнозу, ушло 45 лет.

За время начала эксперимента до фиксации прошло много других экспериментов, были зафиксированы импульсы за этот период, но у них была слишком маленькая интенсивность.

– Почему о фиксации сигнала объявили не сразу?

– Гравитационные волны были зафиксированы еще в сентябре 2015 года. Но даже если совпадение было зафиксировано, надо прежде, чем объявлять, доказать, что оно не является случайным. В сигнале, снимаемом с любой антенны, всегда есть шумовые выбросы (кратковременные всплески), и один из них случайно может произойти одновременно с шумовым всплеском на другой антенне. Доказать, что совпадение произошло не случайно можно только с помощью статистических оценок.

– Почему открытия в области гравитационных волн так важны?

– Возможность зарегистрировать реликтовый гравитационный фон и измерить его характеристики, такие как плотность, температура и т.п., позволяет подойти к началу мироздания.

Привлекательным является то, что гравитационное излучение трудно обнаружить, потому что оно очень слабо взаимодействует с веществом. Но, благодаря этому же свойству, оно и проходит без поглощений из самых далеких от нас объектов с самыми таинственными, с точки зрения материи, свойствами.

Можно сказать, что гравитационные излучения проходят без искажения. Наиболее амбициозная цель – исследовать то гравитационное излучение, которое было отделено от первичной материи в Теории Большого Взрыва, которое создалось в момент создания Вселенной.

– Исключает ли открытие гравитационных волн квантовую теорию?

Теория гравитации предполагает существование гравитационного коллапса, то есть стягивание массивных объектов в точку. В то же время, квантовая теория, которую развивала Копенгагенская школа предполагает, что, благодаря принципу неопределенности, нельзя одновременно указать точно такие параметры как координата, скорость и импульс тела. Здесь есть принцип неопределенности, нельзя определить точно траекторию, потому что траектория – это и координата, и скорость и т. д. Можно определить только некий условный доверительный коридор в пределах этой ошибки, которая связана с принципами неопределенности. Квантовая теория категорически отрицает возможность точечных объектов, но описывает их статистически вероятностным образом: не конкретно указывает координаты, а указывает вероятность того, что она имеет определенные координаты.

Вопрос об объединении квантовой теории и теории гравитации – один из фундаментальных вопросов создания единой теории поля.

Над ним сейчас продолжают работать, и слова “квантовая гравитация” означают совершенно передовую область науки, границу знаний и незнаний, где сейчас работают все теоретики мира.

– Что может дать открытие в будущем?

Гравитационные волны неизбежно должны лечь в фундамент современной науки как одна из составляющих нашего знания. Им отводится существенная роль в эволюции Вселенной и с помощью этих волн Вселенную следует изучать. Открытие способствует общему развитию науки и культуры.

Если решиться выйти за рамки сегодняшней науки, то допустимо представить себе линии телекоммуникационной гравитационной связи, реактивные аппараты на гравитационной радиации, гравитационно-волновые приборы интроскопии.

– Имеют ли отношение гравитационные волны к экстрасенсорике и телепатии?

Не имеют. Описанные эффекты – это эффекты квантового мира, эффекты оптики.

Беседовала Анна Уткина

Гравитационные волны, теоретически предсказанные Эйнштейном еще в 1917 году, всё еще дожидаются своего первооткрывателя.

В конце 1969 года профессор физики Мэрилендского университета Джозеф Вебер сделал сенсационное заявление. Он объявил, что обнаружил волны тяготения, пришедшие на Землю из глубин космоса. До того времени ни один ученый не выступал с подобными претензиями, да и сама возможность детектирования таких волн считалась далеко не очевидной. Однако Вебер слыл авторитетом в своей области, и посему коллеги восприняли его сообщение с полной серьезностью.

Однако вскоре наступило разочарование. Амплитуды волн, якобы зарегистрированных Вебером, в миллионы раз превышали теоретическую величину. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрофизики предположили, что там скрывается гигантская черная дыра, которая ежегодно пожирает тысячи звезд и выбрасывает часть поглощенной энергии в виде гравитационного излучения, а астрономы занялись тщетным поиском более явственных следов этого космического каннибализма (сейчас доказано, что черная дыра там действительно есть, но ведет она себя вполне пристойно). Физики из США, СССР, Франции, Германии, Англии и Италии приступили к экспериментам на детекторах того же типа - и не добились ничего.

Ученые до сих пор не знают, чему приписать странные показания приборов Вебера. Однако его усилия не пропали даром, хотя гравитационные волны до сих пор так и не обнаружены. Несколько установок для их поиска уже построены или строятся, а лет через десять такие детекторы будут выведены и в космос. Вполне возможно, что в не столь отдаленном будущем гравитационное излучение станет такой же наблюдаемой физической реальностью, как и электромагнитные колебания. К сожалению, Джозеф Вебер этого уже не узнает - он умер в сентябре 2000 года.

Что такое волны тяготения

Часто говорят, что гравитационные волны - это распространяющиеся в пространстве возмущения поля тяготения. Такое определение правильно, но неполно. Согласно общей теории относительности, тяготение возникает из-за искривления пространственно-временного континуума. Волны тяготения - это флуктуации пространственно-временной метрики, которые проявляют себя как колебания гравитационного поля, поэтому их часто образно называют пространственно-временной рябью. Гравитационные волны были в 1917 году теоретически предсказаны Альбертом Эйнштейном. В существовании их никто не сомневается, но гравитационные волны всё еще дожидаются своего первооткрывателя.

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимы ускорения, но не любые. Цилиндр, который вращается вокруг своей оси симметрии, испытывает ускорение, однако его гравитационное поле остается однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле станет осциллировать, и от цилиндра во все стороны побегут гравитационные волны.

Этот вывод относится к любому телу (или системе тел), несимметричному относительно оси вращения (в таких случаях говорят, что тело имеет квадрупольный момент). Система масс, квадрупольный момент которой меняется со временем, всегда излучает гравитационные волны.

Основные свойства гравитационных волн

Астрофизики предполагают, что именно излучение гравитационных волн, отбирая энергию, ограничивает скорость вращения массивного пульсара при поглощении вещества соседней звезды.


Гравитационные маяки космоса

Гравитационное излучение земных источников чрезвычайно слабо. Стальная колонна массой 10 000 тонн, подвешенная за центр в горизонтальной плоскости и раскрученная вокруг вертикальной оси до 600 об./мин, излучает мощность примерно 10 -24 Вт. Поэтому единственная надежда обнаружить волны тяготения - найти космический источник гравитационного излучения.

В этом плане весьма перспективны тесные двойные звезды. Причина проста: мощность гравитационного излучения такой системы растет в обратной пропорции к пятой степени ее поперечника. Еще лучше, если траектории звезд сильно вытянуты, так как при этом возрастает скорость изменения квадрупольного момента. Совсем хорошо, если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе - их излучение имеет периодический характер.

В космосе существуют и «импульсные» источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе массивной звезды, предшествующем взрыву сверхновой. Однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса гравитационные волны могут унести с собой до 10% полной энергии светила! Мощность гравитационного излучения в этом случае составляет порядка 10 50 Вт. Еще больше энергии выделяется при слиянии нейтронных звезд, здесь пиковая мощность достигает 10 52 Вт. Превосходный источник излучения - столкновение черных дыр: их массы могут превышать массы нейтронных звезд в миллиарды раз.

Еще один источник гравитационных волн - космологическая инфляция. Сразу после Большого взрыва Вселенная начала чрезвычайно быстро расширяться, и меньше чем за 10 -34 секунды ее поперечник увеличился с 10 -33 см до макроскопического размера. Этот процесс неизмеримо усилил гравитационные волны, существовавшие до его начала, и их потомки сохранились до сих пор.

Косвенные подтверждения

Первое доказательство существования волн тяготения связано с работами американского радиоастронома Джозефа Тейлора и его студента Расселла Халса. В 1974 году они обнаружили пару обращающихся друг вокруг друга нейтронных звезд (излучающий в радиодиапазоне пульсар с молчаливым компаньоном). Пульсар вращался вокруг своей оси со стабильной угловой скоростью (что бывает далеко не всегда) и поэтому служил исключительно точными часами. Эта особенность позволила измерить массы обеих звезд и выяснить характер их орбитального движения. Оказалось, что период обращения этой двойной системы (около 3 ч 45 мин) ежегодно сокращается на 70 мкс. Эта величина хорошо согласуется с решениями уравнений общей теории относительности, описывающих потерю энергии звездной пары, обусловленную гравитационным излучением (впрочем, столкновение этих звезд случится нескоро, через 300 млн лет). В 1993 году Тейлор и Халс были удостоены за это открытие Нобелевской премии.

Гравитационно-волновые антенны

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере. Два таких цилиндра Вебер установил в бункере под полем для гольфа Мэрилендского университета, и один - в Аргоннской национальной лаборатории.

Идея эксперимента проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационно-волновой антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет отфильтровать гравитационные импульсы от различного рода шумов.

Веберовские датчики были в состоянии заметить смещения торцов цилиндра, равные всего 10 -15 его длины - в данном случае 10 -13 см. Именно такие колебания Веберу удалось обнаружить, о чем он впервые и сообщил в 1959 году на страницах Physical Review Letters . Все попытки повторить эти результаты оказались тщетными. Данные Вебера к тому же противоречат теории, которая практически не позволяет ожидать относительных смещений выше 10 -18 (причем гораздо вероятнее значения менее 10 -20). Не исключено, что Вебер напутал при статистической обработке результатов. Первая попытка экспериментально обнаружить гравитационное излучение закончилась неудачей.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. В 1967 году американский физик Билл Фэйрбанк предложил охлаждать их в жидком гелии. Это не только позволило избавиться от большей части тепловых шумов, но и открыло возможность применения сквидов (сверхпроводящих квантовых интерферометров), точнейших сверхчувствительных магнитометров. Реализация этой идеи оказалась сопряжена с множеством технических трудностей, и сам Фэйрбанк до нее не дожил. К началу 1980-х годов физики из Стэнфордского университета построили установку с чувствительностью 10 -18 , однако волн не зарегистрировали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах лишь на десятые и сотые доли градуса выше абсолютного нуля. Такова, например, установка AURIGA в Падуе. Антенной для нее служит трехметровый цилиндр из алюминиево-магниевого сплава, диаметр которого составляет 60 см, а вес - 2,3 т. Он подвешен в вакуумной камере, охлаждаемой до 0,1 К. Его сотрясения (с частотой порядка 1000 Гц) передаются на вспомогательный резонатор массой в 1 кг, который колеблется с такой же частотой, но много большей амплитудой. Эти вибрации регистрируются измерительной аппаратурой и анализируются с помощью компьютера. Чувствительность комплекса AURIGA - около 10 -20 -10 -21 .

Интерферометры

Еще один способ детектирования волн тяготения основан на отказе от массивных резонаторов в пользу световых лучей. Первыми в 1962 году его предложили советские физики Михаил Герценштейн и Владислав Пустовойт, а двумя годами позже и Вебер. В начале 1970-х сотрудник исследовательской лаборатории корпорации Hughes Aircraft Роберт Форвард (в прошлом аспирант Вебера, в дальнейшем весьма известный писатель-фантаст) построил первый такой детектор с вполне приличной чувствительностью. Тогда же профессор Массачусетского технологического института (MIT) Райнер Вайсс выполнил очень глубокий теоретический анализ возможностей регистрации гравитационных волн с помощью оптических методов.

Эти методы предполагают использование аналогов прибора, с помощью которого 125 лет назад физик Альберт Майкельсон доказал, что скорость света строго одинакова по всем направлениям. В этой установке, интерферометре Майкельсона, пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет - остаться такой же, что и раньше.

Интерференционный детектор волн тяготения работает сходным образом. Проходящая волна деформирует пространство и изменяет длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое. Интерференционная картинка меняется, и это можно зарегистрировать. Но это непросто: если ожидаемое относительное изменение длины плеч интерферометра составляет 10 -20 , то при настольных размерах прибора (как у Майкельсона) оно оборачивается колебаниями амплитудой порядка 10 -18 см. Для сравнения: волны видимого света в 10 трлн раз длиннее! Можно увеличить протяженность плеч до нескольких километров, однако проблемы всё равно останутся. Лазерный источник света должен быть и мощным, и стабильным по частоте, зеркала - идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, - максимально глубоким, механическая стабилизация всей системы - воистину совершенной. Короче говоря, интерференционный детектор гравитационных волн - прибор дорогой и громоздкий.

Сегодня самая большая установка такого рода - американский комплекс LIGO (Light Interferometer Gravitational Waves Observatory ). Он состоит из двух обсерваторий, одна из которых находится на тихоокеанском побережье США, а другая - неподалеку от Мексиканского залива. Измерения производят с помощью трех интерферометров (два в штате Вашингтон, один в Луизиане) с плечами четырехкилометровой длины. Установка снабжена зеркальными накопителями света, которые увеличивают ее чувствительность. «С ноября 2005 года все три наших интерферометра работают в нормальном режиме, - рассказал «Популярной механике» представитель комплекса LIGO Питер Солсон, профессор физики Сиракузского университета. - Мы постоянно обмениваемся данными с другими обсерваториями, пытающимися обнаружить гравитационные волны частотой в десятки и сотни герц, возникшие при самых мощных взрывах сверхновых и слиянии нейтронных звезд и черных дыр. Сейчас в строю находится немецкий интерферометр GEO 600 (длина плеч - 600 м), расположенный в 25 км от Ганновера. 300-метровый японский прибор TAMA в настоящее время модернизируется. Трехкилометровый детектор Virgo в окрестностях Пизы подключится к общим усилиям в начале 2007-го, причем на частотах менее 50 Гц он сможет превзойти LIGO. Установки с ультракриогенными резонаторами действуют с возрастающей эффективностью, хотя их чувствительность всё же несколько меньше нашей».

Перспективы

Что же ожидает методы обнаружения гравитационных волн в ближайшем будущем? Об этом «Популярной механике» рассказал профессор Райнер Вайсс: «Через несколько лет в обсерваториях комплекса LIGO установят более мощные лазеры и более совершенные детекторы, что приведет к 15-кратному увеличению чувствительности. Сейчас она составляет 10 -21 (на частотах порядка 100 Гц), а после модернизации превысит 10 -22 . Модернизированный комплекс, Advanced LIGO, в 15 раз увеличит глубину проникновения в космос. В этом проекте активно участвует профессор МГУ Владимир Брагинский, один из пионеров изучения гравитационных волн.

На середину следующего десятилетия запланирован запуск космического интерферометра LISA (Laser Interferometer Space Antenna ) с длиной плеч в 5 миллионов километров, это совместный проект NASA и Европейского космического агентства. Чувствительность этой обсерватории будет в сотни раз выше, чем возможности наземных инструментов. Она в первую очередь предназначена для поиска низкочастотных (10 -4 -10 -1 Гц) гравитационных волн, которые невозможно уловить на поверхности Земли из-за атмосферных и сейсмических помех. Такие волны испускают двойные звездные системы, вполне типичные обитатели Космоса. LISA также сможет регистрировать волны тяготения, возникшие при поглощении черными дырами обыкновенных звезд. А вот для детектирования реликтовых гравитационных волн, несущих информацию о состоянии материи в первые мгновения после Большого взрыва, скорее всего, потребуются более продвинутые космические инструменты. Такая установка, Big Bang Observer , сейчас обсуждается, однако вряд ли ее удастся создать и запустить ранее чем через 30-40 лет».