Которые присутствуют в неограниченном количестве на Земле и не могут быть истощены или исчерпаны в связи с деятельностью человечества. Примерами таких ресурсов являются солнечная, ветровая энергия и т.д.

Климатические и космические ресурсы прямо или косвенно влияют на жизнь на Земле. К тому, же в последнее время они набирают популярность в качестве альтернативных источников энергии. Альтернативная энергетика предусматривает использование безопасных для окружающей среды источников тепловой, механической или электрической энергии.

Энергия Солнца

Солнечная энергия в той или иной форме является источником почти всей энергии на Земле, который можно считать неисчерпаемым природным ресурсом.

Роль солнечной энергии

Солнечный свет помогает растениям производить питательные вещества, а также вырабатывать кислород, которым мы дышим. Благодаря солнечной энергии, вода в реках, озерах, морях и океанах испаряется, затем формируются облака и выпадают атмосферные осадки.

Люди, как и все другие живые организмы зависят от Солнца, для получения тепла и пищи. Тем не менее, человечество также использует солнечную энергию и во многих других формах. Например, из ископаемых видов топлива получают тепло и/или электроэнергию и, по существу, эти накапливали солнечную энергию на протяжении миллионов лет.

Получение и преимущества солнечной энергии

Фотоэлементы представляют собой простой способ получения солнечной энергии. Они являются неотъемлемой частью солнечных батарей. Их уникальность заключается в том, что они преобразовывают солнечное излучение в электричество, без шума, загрязнения окружающей среды или движущихся частей, что делает их надежными, безопасными и долговечными.

Ветровая энергия

Ветер используется на протяжении сотен лет, для получения механической, тепловой и электрической энергии. Ветровая энергия, на сегодняшний день является устойчивым и неисчерпаемым источником.

Ветром называется движение воздуха из области с высоким давлением в область с низким давлением. На самом деле, ветер существует потому, что солнечная энергия неравномерно распределена по поверхности Земли. Горячий воздух стремится вверх, а холодный заполняет пустоту, поэтому до тех пор пока будет солнечный свет, будет существовать и ветер.

За последнее десятилетие, использование энергии ветра увеличилось более чем на 25 %. Тем не менее, ветряная энергия занимает лишь небольшую долю энергетического рынка мира.

Преимущества ветровой энергии

Энергия ветра является безопасной для атмосферы и воды. И поскольку ветер доступен повсеместно, эксплуатационные расходы после установки оборудования близки к нулю. Массовое производство и технологические достижения делают необходимые агрегаты гораздо доступнее, а многие страны поощряют развитие ветряной энергии, и предлагают населению ряд льгот.

Недостатки ветровой энергии

Недостатками использования ветровая энергии являются: жалобы от местных жителей, что оборудование не имеет эстетической привлекательности и шумит. Медленно вращающиеся лопасти также могут убивать птиц и летучих мышей, но не так часто, как это делают автомобили, линии электропередач и высотные здания. Ветер - переменное явление, если он отсутствует, то нет и энергии.

Тем не менее, наблюдается значительный рост ветровой энергетики. С 2000 по 2015 год, совокупная мощность энергии ветра во всем мире увеличилась с 17000 МВт до более чем 430000 МВт. В 2015 году Китай обогнал ЕС по количеству установленного оборудования.

Эксперты дают прогнозы, что при сохранении таких темпов использования данного ресурса, к 2050 году, потребности мира в электрической энергии будут удовлетворены за счет ветровой энергии.

Гидроэнергия

Даже гидроэнергетика является производной от солнечной энергии. Это практически неисчерпаемый ресурс, который сосредоточен в водных потоках. Солнце испаряет воду, которая в дальнейшем, в виде осадков, выпадает на возвышенности, в следствии чего, наполняются реки, образовывая движение воды.

Гидроэнергетика, как отрасль преобразования энергии водных потоков в электрическую энергию, является современным и конкурентным источником получения энергии. Она производит 16% электричества мира и реализовывает его по конкурентным ценам. Гидроэнергетика доминирует в ряде как развитых, так и развивающихся стран.

Энергия приливов и отливов

Приливная энергия является одной из форм гидроэнергии, которая преобразовывает энергию приливов и отливов в электричество или другие полезные формы. Прилив создается благодаря гравитационному воздействию Солнца и Луны на Землю, вызывая движение морей. Поэтому приливная энергия является формой получения энергии из неисчерпаемых источников и может использоваться в двух формах:

Величина прилива

Величина прилива характеризуется разницей вертикального колебания между уровнем воды во время прилива и последующего отлива.

Для захвата прилива могут быть сконструированы специальные плотины или отстойники. Гидроагрегаты вырабатывают электроэнергию в плотинах, а также с помощью насосов перекачивают воду в водохранилища, чтобы снова вырабатывать энергию, когда приливы и отливы будут отсутствовать.

Приливное течение

Приливное течение представляет собой поток воды во время приливов и отливов. Устройства приливного течения стремятся извлекать энергию из этого кинетического движения воды.

Морские течения, создаваемые движением приливов часто усиливаются, когда вода вынуждена проходить через узкие каналы или вокруг мысов. Есть ряд мест, где приливное течение является высоким, и именно в этих областях можно получать наибольшее количество приливной энергии.

Энергия морских и океанических волн

Энергия морских и океанических волн отличается от энергии приливов и отливов, поскольку зависит от солнечной и ветровой энергии.

Когда ветер проходит над поверхностью воды, то часть энергии передает волнам. Выходная энергия зависит от скорости, высоты и длины волны, а также плотности воды.

Длинные и устойчивые волны, вероятно, образуются от штормов и экстремальных погодных условий далеко от берега. Сила бурь и их влияние на поверхности воды настолько сильна, что может вызвать волны на берегу другого полушария. Например, когда Япония была поражена массивным цунами в 2011 году, мощные волны достигли побережья Гавайских островов и даже пляжей штата Вашингтон.

Для того, чтобы преобразовать волны в необходимую энергию для человечества, необходимо отправиться туда, где волны самые большие. Успешное использование энергии волн в больших масштабах происходит лишь в нескольких регионах планеты, включая штаты Вашингтон, Орегон и Калифорния и других районы, расположенные вдоль западного побережья Северной Америки, а также берега Шотландии, Африки и Австралии. В этих местах волны достаточно сильные и энергию можно получать регулярно.

Полученная энергия волн может обеспечить потребности регионов, а в некоторых случаях и целых стран. Постоянная мощность волн означает, что выходная энергия никогда не прекращается. Оборудование, которое перерабатывает энергию волн также может хранить избыточную энергию, когда это необходимо. Эта накопленная энергия используется при перебоях в подаче электроэнергии и ее отключении.

Проблемы климатических и космических ресурсов

Не смотря на то, что климатические и космические ресурсы являются неисчерпаемыми, их качество может ухудшиться. Главной проблемой этих ресурсов считается глобальное потепление, которое вызывает ряд негативных последствий.

Средняя глобальная температура может увеличиться на 1.4-5.8º C к концу 21-го века. Хотя цифры кажутся небольшими, они могут вызвать значительные изменения климата. (Разница между глобальными температурами во время ледникового периода и периода отсутствия льдов составляет лишь около 5 ° С.) К тому же, повышение температуры может привести к изменению количества осадков и погодных условий. Потепление воды в океанах станет причиной более интенсивных и частых тропических штормов и ураганов. Также ожидается, что в следующем столетии уровень моря увеличится на 0,09 - 0,88 м, главным образом, в результате таяния ледников и расширение морской воды.

И, наконец, здоровье человека также поставлено на карту, поскольку глобальное изменение климата может привести к распространению некоторых заболеваний (таких, как малярия), затоплению крупных городов, высокому риску теплового удара, а также плохому качеству воздуха.

Тема: ресурсы мирового океана. Климатические и космические ресурсы.

Учебно-воспитательные задачи:

1.Рассмотреть классификацию ресурсов Мирового Океана и рекреационных ресурсов.

2.Оценить перспективы использования альтернативных ресурсов Мирового океана, климатических и космических.

Оборудование: карты «Океаны», «Природные ресурсы мира», учебники, атлас.

Тип урока: урок-конференция.

Структура урока:

План:

1.Классификация ресурсов Мирового океана, их использование, проблемы (Океан «болен»).

2. Климатические и космические ресурсы нетрадиционные (альтернативные) источники энергии, ее виды.

3. Рекреационные ресурсы - четыре главных типа.

Ход урока.

1.Изучение нового материала (выступления учащихся).

1.Классификация ресурсов Мирового океана: кладовая богатств. Виды ресурсов и их использование, проблемы.

По итогам выступлений учащихся составить: план-конспект, опорный конспект, план-схему.

Ресурсы Мирового океана

(план-конспект)

Главный ресурс –

морская вода

Запасы – 1370 млн км 3 , 96,5%

на каждого жителя планеты – 270 млн м 3 океанской воды;

«живая вода» - 75 химических элементов таблицы Менделеева;

1 км 3 содержит – 37 млн т растворенных веществ: соли млн т, серы – 6 млн т, много

соды, брома, Al, Ca, Na, Cu, тория золота, серебра.

Минеральные ресурсы

дна океана

    На континентальном шельфе: нефть и газ – 1/3 от общей мировой добычи,

к 2010г. – половина нефти и газа поступили из недр Мирового океана. Мексиканский залив – 57 действующих скважин, Северное море – 37,

Персидский залив – 21, Гвинейский залив – 15.

    Глубоководное ложе океана – железомарганцевые конкреции.

    Сокровища затонувших кораблей (ДТ , с. 44)

Энергетические ресурсы

    Приливные электростанции – суммарная мощность на нашей планете

приливов оценивается от 1 до 6 млрд кВт*ч – это превышает энергию

всех рек земного шара.

Возможности имеются в 25 – 30 местах земного шара для сооружения

данных электростанций.

Самыми большими ресурсами приливной энергии обладают: Россия, Франция (здесь построена в 1967 году первая в мире приливная электростанция), Канада, Великобритания, Австралия, Аргентина, США.

    Волновые электростанции, использующие энергию морских течений.

Биологические ресурсы Мирового океана

Биомасса насчитывает 140 тыс. видов – это животные (рыбы, млекопитающие,

моллюски, ракообразные) и растения, обитающие в его водах.

Основную часть биомассы составляют фитопланктон и зообентос.

Нектон – рыбы, млекопитающие, кальмары, креветки их насчитывается свыше

Хозяйственное использование вод Мирового океана

Самые продуктивные акватории Мирового океана – это северные широты:

Норвегия, Дания, Великобритания, Германия, США (моря: Норвежское, Северное,

Баренцево, Охотское, Японское, северные части Атлантического и Тихого океанов).

Мировая добыча рыбы и морепродуктов достигла 110 млрд т в год.

Рыболовство – отрасль мирового хозяйства, обеспечивающая существование

15 млн человек.

30 млн т рыбы и морепродуктов приходится на искусственное разведение: на аквакультуру – искусственное выращивание водных организмов в морской и

пресной воде.(аквакультура зародилась в Китае 4 тысячелетия назад);

Марикультуру – искусственное разведение микроорганизмов морской воде.

    Мировой океан обслуживает около 4/5 сей международной торговли.

    Число крупных и средних морских портов на всех морях и океанах

превышает 2,5 тыс

    Транспортное значение Мирового океана очень велико.

Проблемы: глобальные экологические

изменения вод

Мирового океана

Океан «болен», в него ежегодно попадает 1 млрд т нефти (от катастроф танкеров и буровых платформ, слива нефти с загрязненных судов).

Отходы промышленности: тяжелые металлы, радиоактивные отходы в

контейнерах и др.

Более 10 тыс. туристических судов Средиземного моря выбрасывают

нечистоты в море до очистки.

Пути решения

Экологических проблем

Мирового океана

    Система экологических, технических социальных мер одновременно.

    Международные соглашения по мировому океану, ибо мертвый океан

не нужен человечеству.

2.Климатические и космические ресурсы, нетрадиционные (альтернативные) источники энергии, ее виды.

После выступления учащихся отображаются основные сведения в: план - схеме.

Термоядерная энергия

Космическая энергетика

Ветроэнергетика

ВЭУ – Дания, ФРГ, Великобритания, Нидерланды, США (Калифорния), Индия, Китай.

Нетрадиционная (альтернативная) энергетика

Энергетика использующая разность температур

Энергетика, использующая разность температур глубинных и поверхностных вод моря, тепловые насосы и т.д.

Установки геотермальной энергии (ГеоТЭС) - в странах Америки на Филиппинах, В Исландии.

Гелиоэнергетика

Солнечные батареи, Гелиоконденсаторы, солнечные электростанции (СЭС) работают в 30 странах.

Альтернативная гидроэнергетика

    Приливные – ПЭС.

    Волновые электростанции, используют энергию морских течений.

3. Рекреационные ресурсы - снова отдыха и туризма.

К рекреационным ресурсам относятся как природные, так и антропогенные объекты и явления, которые можно использовать для отдыха и туризма. Они подразделяются на четыре главных типа:

    Рекреационно-лечебный (например, лечение минеральными водами).

    Рекреационно-оздоровительный (например, купально-пляжные местности).

    Рекреационно-спортивный (например, горнолыжные базы).

    Рекреационно-познавательный (например, исторические памятники). К природно-рекреационным ресурсам относятся морские побережья, берега рек, озер, горы,

лесные массивы, выходы минеральных вод, лечебные грязи. Главные формы природно-рекреационной территории:

    Зелёные зоны городов.

    Заповедники и заказники.

    Национальные парки.

К рекреационным ресурсам относятся культурно-исторические достопримечательности: Московский Кремль, римский Колизей, афинский Акрополь, гробница Тадж-Махал в Агре (Индия)

Международный туризм особенно развит в Италии, Испании, Турции, Швейцарии, Индии,

Египте и других странах мира.

П. Итоги урока. Оценка и самооценка работы учащихся.

Задание на дом: с. 35-37. Подготовка к тестированию.

Астероиды – это начальный материал, оставшийся после образования Солнечной Системы. Они распространены везде: некоторые пролетают совсем близко к Солнцу, другие обнаружены неподалеку от орбиты Нептуна. Огромное количество астероидов собрано между Юпитером и Марсом – они формируют так называемый Пояс астероидов. На сегодняшний день было обнаружено около 9000 объектов, проходящих рядом с орбитой Земли.

Многие из таких астероидов находятся в зоне доступа и многие же содержат огромные запасы ресурсов: начиная от воды, заканчивая платиной. Их использование даст практически бесконечный источник, который установит стабильность на Земле, увеличит благосостояние человечества, а также создаст основу для присутствия и исследования космоса.

Невероятные ресурсы

Существует более 1500 астероидов, до которых также легко добраться, как и до Луны. Их орбиты пересекаются с орбитой Земли. Такие астероиды обладают небольшой силой тяжести, что облегчает задачи посадки и взлета.

Ресурсы астероидов обладают рядом уникальных особенностей, что делает их еще более привлекательными. В отличие от Земли, где тяжелые металлы расположены ближе к ядру, металлы на астероидах распределены по всему объекту. Таким образом, извлекать их намного легче.

Человечество только начинает понимать невероятный потенциал астероидов. Первый контакт космического аппарата с одним из них произошел в 1991 году, когда аппарат «Галилео» пролетел рядом с астероидом Гаспра на его пути к Юпитеру. Наше знание таких небесных соседей было революционизировано немногочисленными международными и американскими миссиями, предпринятыми с тех пор. Во время каждой из них наука об астероидах заново переписывалась.

Об открытии и количестве астероидов

Миллионы астероидов пролетают мимо орбит Марса и Юпитера, чьи гравитационные пертурбации выталкивают некоторые объекты ближе к Солнцу. Таким образом и появился класс околоземных астероидов.

Пояс астероидов

Когда говорят об астероидах, большинство людей представляют именно их Пояс. Миллионы объектов составляющих его, образуют похожий на кольцо район меду орбитами Марса и Юпитера. Несмотря на то, что эти астероиды очень важны с точки зрения понимания истории возникновения и развития Солнечной Системы, по сравнению с околоземными, добраться до них не так легко.

Околоземные астероиды

Околоземные астероиды определяются как астероиды, чья орбита или ее часть находится в промежутке от 0,983 до 1,3 астрономических единиц от Солнца (1 астрономическая единица – расстояние от Земли до Солнца).

На 1960 год было известно лишь о 20 околоземных астроидах. К 1990 году число выросло до 134, а на сегодняшний день их количество оценивается в 9000 и растет все время. Ученые уверены, что на самом деле их более миллиона. Среди наблюдаемых сегодня астероидов 981 из них больше 1 км в диаметре, остальные – от 100 м до 1 км. 2800 – меньше 100 м в диаметре.

Околоземные астероиды классифицируются на 3 группы в зависимости от их расстояния от Солнца: Атоны, Аполлоны и Амуры.

Два околоземных астероида посещались космическими аппаратами-роботами: миссия НАСА посетила астероид 433 Эрос, а японская «Hayabusa» астроид 25143 Итокава. В настоящее время НАСА работает над миссией «OSIRIS-Rex», цель которой – полет к углеродному астероиду 1999 RQ36 в 2019 году.

Состав астероидов

Околоземные астроиды широко варьируются по своему составу. Каждый их низ в различных количествах содержит воду, металлы и углеродистые материалы.

Вода

Вода с астероидов – это ключевой ресурс в космосе. Воду можно превратить в ракетное топливо или снабжать ей людские нужды. Кроме того, она может кардинальным образом изменить способ исследования космоса. Один богатый водой астероид шириной 500 м содержит в 80 раз больше воды, чем может поместиться в самый крупный танкер, а если ее превратить в топливо для космических аппаратов, то получится в 200 раз больше, чем требовалось для запуска всех ракет в истории человечества.

Редкие металлы

Однажды получив доступ, научившись добывать, извлекать и использовать водные ресурсы астероидов, добыча на них металлов станет намного реальнее. Некоторые околоземные объекты содержат МПГ в таких высоких концентрациях, какими могут похвастаться лишь богатейшие земные рудники. Один богатый платиной астероид шириной 500 м содержит почти в 174 раза больше этого металла, чем добывается на Земле в год и в 1,5 раза больше всех известных мировых запасов МПГ. Такого количества достаточно для того, чтобы заполнить баскетбольную площадку на 4 раза выше кольца.

Другие ресурсы

Астроиды также содержат более распространенные металлы, например, железо, никель, кобальт. Иногда в невероятных количествах. Кроме того, на них можно встретить летучие вещества, например, азот, CO, CO2 и метан.

Использование астероидов

Вода – важнейший элемент Солнечной Системы. Для космоса вода, помимо своей критической гидратационной роли, предоставляет и другие важные преимущества. Она может защитить от солнечной радиации, использоваться в качестве топлива, давать кислород и т.д. На сегодняшний день, вся вода и связанные с ней ресурсы, необходимые для космических полетов, транспортируются с поверхности Земли по безмерно высоким ценам. Среди всех ограничений на человеческую экспансию в космос, это самое важное.

Вода – ключ к Солнечной Системе

Воду с астероидов можно как конвертировать в ракетное топливо, так и поставлять в специальные хранилища, расположенные в стратегических местах на орбите для заправки космических кораблей. Такой вид топлива, поставляемый и продаваемый, даст огромный толчок к развитию космических полетов.

Вода с астероидов может значительно сократить затраты на космические миссии, поскольку все они зависят, в первую очередь, от топлива. Например, намного более выгодно транспортировать литр воды с одного из астероидов на орбиту Земли, чем доставить этот же литр с поверхности планеты.

На орбите воду можно использовать для заправки спутников, увеличения грузоподъемности ракет, обслуживания орбитальных станций, предоставлять защиту от радиации и т.д.

Стоимость вопроса

Богатый водой астероид шириной 500 м обладает водой стоимостью $50 миллиардов. Ее можно доставить на специальную космическую станцию, где будут заправлять аппараты для полетов в дальний космос. Это весьма эффективно даже при скептических предположениях, что: 1. Извлекаться будет всего 1% воды, 2. Половина добытой воды будет использовать при доставке, 3. Успешность коммерческих космических полетов приведет к 100-кратном снижению стоимости запуска ракет с Земли. Конечно, при не столь консервативном подходе, ценность астероидов вырастет на многие триллионы или даже десятки триллионов долларов.

Экономика операций по разработке астероидов может также быть улучшена при использовании «местного» топлива. То есть горнодобывающий аппарат может летать между планетами с помощью воды от того астероида, на котором она добыта, что приведет к высокой окупаемости.

От воды к металлам

При условии успешности добычи воды, разработка других элементов и металлов станет намного более реальной. Другими словами, добыча воды позволит добывать металлы.

МПГ на Земле встречаются очень редко. Они (как и похожие на них металлы) обладают специфическими химическими свойствами, которые делают их невероятно ценными для промышленности и экономики 21 века. Кроме того, их изобилие может дать начало к новому, еще не изведанному, их применению.

Использование металлов с астероидов в космосе

Кроме доставки на Землю, металлы, добытые на астероидах, могут использоваться прямо в космосе. Такие элементы, как, например, железо и алюминий, можно будет применять при строительстве космических объектов, защиты аппаратов и т.д.

Целевые астероиды

Доступность

Более 1500 астероидов можно достигнуть также легко, как и Луны. Если брать в расчет обратный пути, то цифра увеличивается до 4000. Вода, извлекаемая на них, может быть использована для обратного полета на Землю. Это еще больше увеличивает доступность астероидов.

Расстояние от Земли

В определенных случаях, особенно во время первых миссий, следует нацеливаться на астероиды, которые проходят в районе Земля-Луна. Большая их часть не пролетает так близко, но есть и исключения.

Благодаря стремительному уровню обнаружения новых околоземных астероидов и увеличению возможностей их исследования, весьма вероятно, что большинство доступных объектов еще предстоит открыть.

Planetary Resources

Все выше перечисленное интересует многие организации и отдельных людей. Многие видят в этом будущее добычи в целом и Земли в частности.

Именно такими людьми была основана компания Planetary Resources, официально объявленная цель которой заключается применении коммерческих, инновационных технологий для исследования космоса. Planetary Resources собирается развивать недорогие роботизированные космические аппараты, которые позволят открывать тысячи богатых ресурсами астероидов. Компания планирует использовать природные богатства космоса для развития экономики, строя, таким образом, будущее всего человечества.

Ближайшая цель Planetary Resources – значительным образом сократить стоимость разработки астероидов. При этом будут объединяться все самые лучшие коммерческие аэрокосмические технологии. Как заявляют в компании, их философия позволит быстро развивать частное, коммерческое изучение космоса.

Технологии

Большая часть технологий Planetary Resources – их собственные. Технологический подход компании обусловлен несколькими простыми принципами. Planetary Resources объединяет современные инновации в области микроэлектроники, медицины, информационных технологий, роботостроения.

Arkyd series 100 LEO

Исследование космоса ставит специфичные преграды в деле строительства космических аппаратов. Критически важными аспектами в этом вопросе являются оптические коммуникации, микродвигатели и т.д. Planetary Resources активно работает над ними в сотрудничестве с НАСА. Сегодня уже создан космический телеском Arkyd series 100 LEO (рис.слева). Leo – это первый частный космический телескоп и средство достижения околоземных астероидов. Он будет находиться на низкой земной орбите.

Будущие усовершенствования телескопа Leo откроют дорогу для следующего этапа – запуска миссии аппарата Arkyd series 200 - Interceptor (рис.слева). В стыковке со специальным геостационарным спутником, Interceptor пройдет позиционирование и отправится к целевому астероиду для сбора всех необходимых данных о нем. Два или более аппарата Interceptor могут работать вместе. Они позволят определять, отслеживать и сопровождать объекты, пролетающие между Землей и Луной. Миссии Interceptor позволят Planetary Resources быстро получить данные о нескольких околоземных астероидах.

Дополнив Interceptor возможностью лазерной коммуникации в глубоком космосе, Planetary Resources сможет приступить к миссии аппарата под названиемArkyd series 300 Rendezvous Prospector (рис.слева), целью которой являются более дальние астероиды. Встав на орбиту одного из них, Rendezvous Prospector будет собирать данные о форме астероида, вращении, плотности, составе поверхности и недр. Применение Rendezvous Prospector продемонстрирует относительно небольшую стоимость возможности межпланетных полетов, что соответствует интересам НАСА, различных научных организаций, частных компаний и т.д.

Добыча на астероиде

Добыча и извлечение металлов и других ресурсов в условиях микрогравитации – дело, которое будет зависеть от значительных исследований и вложений. Planetary Resources будет работать над критически важными технологиями, которые позволят получать на астероидах как воду, так и металлы. Вкупе с недорогими аппаратами для исследования космоса, это дает возможность устойчивого развития этой области.

Команда Planetary Resources

В состав Planetary Resources входят выдающиеся в своем деле люди: ученые инженеры, специалисты в самых разных сферах. Основателями компании считаются бизнесмена и пионера коммерческой космической индустрии Эрик Андерсон и Питер Диамандис. Среди других членов команды Planetary Resources есть бывшие специалисты НАСА Крис Левицки и Крис Вурхиз, знаменитый кинорежиссер Джеймс Кэмерон, бывший астронавт НАСА Томас Джонс, бывший технический директор Microsoft Дэвид Васкевич и другие.

Будущее человечества связано с неисчерпаемыми ресурсами Мирового океана.

Океаническая вода, на долю которой приходится 96,5% гидросферы, составляет главное богатство Мирового океана. Как известно, в океанической воде содержится до 75 химических элементов таблицы Менделеева. Таким образом, морские и океанические воды следует рассматривать в качестве источника минеральных ресурсов.

В океанической воде наибольшая концентрация приходится на долю растворенных солей. Человечество испокон веков добывало поваренную соль путем выпаривания морской воды. В настоящее время Китай и Япония часть своих потребностей в поваренной соли удовлетворяют за счет морской воды. Около одной трети поваренной соли, добываемой в мире, приходится на долю морских океанических вод.

В морской воде содержатся магний, сера, бром, алюминий, медь, уран, серебро, золото и другие химические элементы. Современные технические возможности позволяют выделять из океанической воды магний и бром.

Мировой океан является кладезем подводных минеральных ресурсов. Практически все полезные ископаемые, распространенные на суше, встречаются и в шельфовой зоне Мирового океана.

Полезными ископаемыми богаты Персидский и Мексиканский заливы, северная часть Каспия, прибрежные зоны Северного Ледовитого океана, где ведется промышленная добыча и разведка нефтегазовых месторождений.

В настоящее время активно исследуются прибрежные зоны Мирового океана на предмет разведки и добычи рудных и нерудных полезных ископаемых. В частности, прибрежные зоны Великобритании, Канады, Японии и Китая, как оказалось, богаты углем. У берегов Индонезии, Таиланда и Малайзии обнаружены месторождения олова. В прибрежной зоне Намибии ведется разведка алмазов; золото и железомарганцевые конкреции добываются в береговой зоне США. Балтийское море, омывающее побережье прибалтийских стран, издавна славится янтарем.

Наибольший интерес Мировой океан представляет как источник энергетических ресурсов. Практически энергетические ресурсы Мирового океана неисчерпаемы. Энергия приливов и отливов используется человеком начиная со второй половины XX века. Согласно расчетам, энергия приливов и отливов оценивается в 6 млрд. кВт, что почти в 6 раз превышает энергетический запас рек земного шара.

Потенциальные запасы энергии приливов и отливов сосредоточены в России, Канаде, США, Аргентине, Австралии, Китае, Франции, Великобритании и др. Перечисленные выше страны используют энергию приливов и отливов в целях энергоснабжения.

Мировой океан богат и биоресурсами. Растительный и животный мир Мирового океана, богатый, в частности, белками, занимает существенное место в рационе питания человека.

По некоторым сведениям, в океане встречается до 140 тысяч видов животных и растений. В настоящее время потребности человечества в кальции на 20% удовлетворяются за счет биоресурсов Мирового океана. На долю вылова рыбы приходится 85% добываемой «живой» биомассы.

Богаты рыбой Берингово, Охотское, Японское и Норвежское моря, а также Тихоокеанское побережье Латинской Америки.

Ограниченность биоресурсов заставляет человечество относиться бережно к богатствам Мирового океана.

КЛИМАТИЧЕСКИЕ И КОСМИЧЕСКИЕ РЕСУРСЫ

К климатическим и космическим ресурсам относятся энергия Солнца, ветра, а также геотермальное тепло. Перечисленные ресурсы относятся к так называемым нетрадиционным ресурсам.

Наибольший интерес для человечества представляет солнечная энергия. Солнце является источником неисчерпаемой энергии, которую человек использует с давних времен в народном хозяйстве.

Суммарная мощность солнечной энергии, поступающей на землю, в десятки раз превосходит суммарную энергию топливно-энергетических ресурсов Земли и в тысячи раз ту, что ныне потребляет человечество.

Солнечной энергией богаты тропические широты. В тропиках, причем в аридной зоне, доминируют безоблачные дни, а солнечные лучи направлены к поверхности земли почти отвесно. В настоящее время в ряде стран эксплуатируются гелиостанции.

Сила ветра - другой важный нетрадиционный источник энергии. Человек издавна использует силу ветра. Это относится к ветряным мельницам, парусным судам и т.д. Умеренные широты сравнительно богаты ветровой энергией.

Внутренне тепло Земли, как отмечалось, - третий нетрадиционный источник энергии. Внутренняя энергия Земли называется геотермальной.

Геотермальные источники энергии приурочены к сейсмически активным поясам, к вулканическим районам и к зонам тектонических нарушений.

Значительными запасами геотермальной энергии владеют: Исландия, Япония, Новая Зеландия, Филиппины, Италия, Мексика, США, Россия и др.

Ограниченность минеральных источников и экологическая «чистота» нетрадиционных источников энергии привлекают внимание ученых к освоению энергии Солнца, ветра и внутреннего тепла Земли.

БИОЛОГИЧЕСКИЕ РЕСУРСЫ

Растительный и животный мир составляют биологическое богатство Земли, именуемое биоресурсами. Растительные ресурсы включают в себя совокупность как культурных, так и диких растений. Растительные ресурсы весьма разнообразны.

Растительные и животные ресурсы Земли относятся к исчерпаемым и в то же время возобновляемым природным ресурсам. Именно биоресурсы были освоены человеком в первую очередь.

Важная роль в хозяйственной деятельности человека принадлежит лесам, общая площадь которых составляет 40 млн. км2 (4 млрд. га), или же почти треть (30%) площади суши.

Вырубка лесов (ежегодная заготовка древесины в мире равна 4 млрд. м.куб) и промышленное освоение лесных территорий являются главной причиной сокращения площади лесных массивов.

За последние 200 лет площадь лесных массивов на Земле сократилась почти вдвое. Эта тенденция сохраняется, и по последним данным площадь лесных массивов ежегодно сокращается на 25 млн. га. Сокращение лесных массивов нарушает кислородный баланс, приводит к обмелению рек, сокращению численности диких животных и исчезновению ценных сортов древесины. Другими словами, хищническая эксплуатация лесных массивов порождает экологические проблемы, решение которых тесно связано с охраной окружающей среды.

Лесные массивы в виде непрерывных полос приурочены к умеренной и экваториальной зонам (см. «Атлас», стр. 8).

Лесные массивы сосредоточены в умеренном и субтропическом климатических поясах. Около половины мировых запасов древесины находится в северном полушарии. В лесах умеренной зоны наиболее ценные породы представлены тиком и хвойными видами. Лесами богаты Россия, Канада, США и Финляндия. Именно в этих странах развита лесная отрасль промышленности, где благодаря искусственным посадкам приостановлено сокращение лесных массивов.

Леса южного полушария сосредоточены в тропическом и экваториальном климатических поясах. На долю тропических и экваториальных лесов южного полушария приходится другая половина мировых запасов древесины.

Экваториальные и тропические ярусные леса в отличие от лесов умеренной зоны представлены широколиственными породами деревьев. Кроме того, рассматриваемые леса богаты ценными породами древесины.

Лесные массивы южного полушария сосредоточены в Бразилии, Перу, Боливии, Колумбии, Конго, Индии, Мьянме, Индонезии и др.

Мечты о колонизации космоса и добыче там природных ресурсов появились давно, но именно сегодня они становятся реальностью. В начале года компании и Deep Space Industries заявили о намерениях начать промышленное освоение космоса. Т&P разбираются, какие полезные ископаемые они собираются добывать, насколько эти проекты осуществимы и сможет ли космос стать новой Аляской для золотоискателей XXI века.

Если о промышленном освоении планет пока только мечтают, то с астероидами дела обстоят куда более оптимистично. В первую очередь речь идет только о самых ближайших к Земле объектах, да и то тех чья скорость не превышает порога первой космической . Что касается самих астероидов, то наиболее перспективными для добычи считаются, так называемые, астероиды M-класса, большая часть из которых почти целиком состоит из никеля и железа, а также астероиды S-класса, имеющие в своей породе силикаты железа и магния. Также исследователи предполагают, что на этих астероидах могут быть обнаружены залежи золота и металлов платиновой группы, последние же ввиду своей редкости на Земле представляет особый интерес. Для того чтобы представлять о каких цифрах идет речь: астероид средних размеров (диаметром порядка 1,5 километров) содержит металлов на 20 триллионов долларов.

Наконец, еще одна важнейшая цель космических золотоискателей - астероиды С-класса (примерно 75 процентов от всех астероидов Солнечной системы), на которых планируется добывать воду. По подсчетам, даже самые маленькие астероиды этой группы, диаметром в 7 метров, могут содержать в себе до 100 тонн воды. Недооценивать воду нельзя, не стоит забывать, что из нее можно получить водород, который затем использовать в качестве топлива. К тому же добыча воды непосредственно на астероидах позволит сэкономить деньги на ее доставку с Земли.

Что добывать в космосе

Платина - лакомый кусок для всех инвесторов. Именно за счет платины энтузиасты космической добычи ресурсов смогут окупить свои затраты.

От запасов воды будет зависеть работа всей добывающей станции. К тому же «водных» астероидов вблизи Земли больше всего: порядка 75 процентов.

Железо - важнейший металл современной промышленности, поэтому вполне очевидно, что на нем в первую очередь будет сконцентрированы усилия добытчиков.

Как добывать

Добывать на астероиде, после чего доставлять на Землю для переработки.

Фабрика по добыче полезных ископаемых строится непосредственно на поверхности астероида. Для этого необходимо разработать технологию удерживающую оборудование на поверхности астероида, так как из-за небольшой силы тяжести даже слабое физическое воздействие может легко оторвать конструкцию и унести ее в космос. Другая проблема этого способа - доставка сырья для последующей обработки, которая может обойтись очень дорого.

Система самовоспроизводящихся машин. Чтобы обеспечить работу производства без участия человека, предлагается вариант создания системы самовоспроизводящихся машин, каждая из которых за определенный срок собирает свою точную копию. В 80-е годы такой проект даже разрабатывался НАСА, правде речь тогда шла о поверхности Луны. Если за месяц такая машина будет способна собирать аналогичную себе, меньше чем через года таких машин будет больше тысячи, а через три более миллиарда. В качестве источника питания машин предлагается использовать энергию солнечных батарей.

Добывать и перерабатывать прямо на астероиде. Строить станции, обрабатывающие сырье на поверхности астероида. Достоинство этого способа в том, что он позволит значительно сэкономить средства на доставку ископаемых к месту добычи. Минусы - дополнительное оборудования, и соответственно, более высокая степень автоматизации.

Переместить астероид к Земле для последующей добычи. Притянуть астероид к Земле можно с помощью космического буксира, по принципу действия аналогичного тем, что доставляют сейчас спутники на орбиту Земли. Второй вариант - создание гравитационного буксира, технологии с помощью которой планируется защищать Землю от потенциально опасных астероидов. Буксир представляет собой небольшое тело, которое подходит вплотную к астероиду (на расстояние до 50 метров) и создает гравитационное возмущение, меняющее его траекторию. Третий вариант, самый смелый и неординарный - изменение альбедо (отражающей способности) астероида. Часть астероида накрывается пленкой или покрывается краской, после чего, согласно теоретическим выкладкам, из-за неравномерного нагрева поверхности Солнцем, скорость вращения астероида должна измениться.

Кто будет добывать

За создание отвечает американский бизнесмен Питер Диамантис, создатель фонда X-Prize . Ученый коллектив возглавляют бывшие сотрудники НАСА, а финансовую поддержку проекту оказывают Ларри Пейдж и Джеймс Кэмерон. Первичная задача компании - постройка телескопа Arkyd-100 , производство которого она оплачивает сама, а все пожертвования пойдут на обслуживание телескопа и непосредственно, запуск, намеченный на 2014 год. Планы у Arkyd-100 вполне скромны - компания рассчитывает испытать телескоп, а заодно сделать качественные снимки галактик, Луны, туманностей и прочих космических красот. Но уже последующие Arkyd-200 и Arkyd-300 будут заниматься конкретным поиском астероидов и подготовке к добыче сырья.

У руля Deep Space Industries стоит Рик Тамлинсон, приложивший руку к все-тому же фонду X-Prize, бывший сотрудник НАСА Джон Мэнкинс и австралийский ученый Марк Сонтер. Уже сейчас компания располагает двумя космическими аппаратами. Первый из них, FireFly, планируется к запуску в космос в 2015 году. Аппарат весит всего 25 килограмм и будет нацелен на поиск подходящих для будущего освоения астероидов, изучение их структуры, скорости вращения и других параметров. Второй, DragonFly, должен будет доставить куски астероидов массой 25-75 килограмм на Землю. Его запуск, согласно программе, осуществится в 2016 году. Главный секретное оружие Deep Space Industries - технология MicroGravity Foundry, микрогравитационный 3D-принтер, способный создавать высокоточные детали большой плотности в условиях малой гравитации. Уже к 2023 году компания рассчитывает на активную добычу на астероидах платины, железа, воды и газов.

НАСА тоже не стоит в стороне. К сентябрю 2016 года агентство планирует запустить аппарат OSIRIS-REX , который должен начать исследование астероида Бенну. Ориентировочно к концу 2018 году аппарат достигнет цели, возьмет пробу грунта и еще через два-три года вернется на Землю. В планах исследователей - проверить догадки о происхождении Солнечной системы, проследить за отклонением траектории астероида (существует, хоть и чрезвычайно малая, вероятность, что Бенну когда-нибудь может столкнуться с Землей), и, наконец, самое интересное: изучить грунт астероида на предмет полезных ископаемых.

Для анализа грунта на OSIRIS-REX будут работать 3 спектрометра: инфракрасный, тепловой и рентгеновский. Первый будет измерять инфракрасное излучение и искать углеродосодержащие материалы, второй - измерять температуру в поисках воды и глины. Третий - улавливать источники рентгеновского излучения для обнаружения металлов: прежде всего железа, магния и кремния.

Кому принадлежат космические ресурсы

Если глобальные планы компаний станут реальностью, встает еще один насущный вопрос: как будут разделяться права на добычу полезных ископаемых в космосе? Впервые этой проблемы коснулись еще в 1967 году, когда ООН приняла закон, запрещающий добычу ресурсов в космосе, пока компания-добытчик не представит де-факто захвата территории. О правах на сами ресурсы ничего сказано не было. Немного прояснил ситуацию документ ООН 1984 года, касающийся Луны. В нем заявлено, что «Луна и ее природные ресурсы являются общим наследием человечества», а использование ее ресурсов «должно осуществляться на благо и в интересах всех стран». При этом главные космические державы, СССР и США, этот документ проигнорировали и вопрос остался открытым до сегодняшнего дня.

Для решения вопроса некоторые специалисты предлагают взять за аналог систему, применяемую сейчас в Конвенции о международном морском праве, регулирующей добычу ископаемых с морского дна. Принципы ее более чем идеалистические - согласно конвенции, ни одно государство, так же как и частное лицо не может претендовать на право присвоения территории и ее ресурсов, эти права принадлежат всему человечеству, а сами ресурсы должны использоваться только в мирных целях. Но вряд ли это остановит агрессивную экспансию частных компаний. О характере будущей индустрии лучше всего высказался глава правления Deep Space Industries Рик Тамлинсон: «Существует миф, что впереди нас не ждет ничего хорошего и нам не на что надеяться. Этот миф существует только в умах верящих в него людей. Мы же убеждены, что это только начало».